Learn R Programming

ctsem (version 1.1.6)

ctCI: ctCI Computes confidence intervals on specified parameters / matrices for already fitted ctsem fit object.

Description

ctCI Computes confidence intervals on specified parameters / matrices for already fitted ctsem fit object.

Usage

ctCI(ctfitobj, confidenceintervals, optimizer = "NPSOL", verbose = 0)

Arguments

ctfitobj
Already fit ctsem fit object (class: ctsemFit) to estimate confidence intervals for.
confidenceintervals
character vector of matrices and or parameters for which to estimate 95% confidence intervals for.
optimizer
character vector. Defaults to NPSOL (recommended), but other optimizers available within OpenMx (e.g. 'SLSQP') may be specified.
verbose
Integer between 0 and 3 reflecting amount of output while calculating.

Value

ctfitobj, with confidence intervals included.

Details

Confidence intervals typically estimate more reliably using the proprietary NPSOL optimizer available within OpenMx only when installing directly from OpenMx website. Use command " source('http://openmx.psyc.virginia.edu/getOpenMx.R') " to install OpenMx with NPSOL. If estimating for a multigroup model, specify confidence intervals as normal, e.g. confidenceintervals = c('DRIFT', 'diffusion_Y1_Y1') . The necessary group prefixes are added internally.

Examples

Run this code
## Examples set to 'dontrun' because they take longer than 5s.
## Not run: 
# data("ctExample3")
# model <- ctModel(n.latent = 1, n.manifest = 3, Tpoints = 100, 
#  LAMBDA = matrix(c(1, "lambda2", "lambda3"), nrow = 3, ncol = 1), 
#  MANIFESTMEANS = matrix(c(0, "manifestmean2", "manifestmean3"), nrow = 3, 
#    ncol = 1))
# fit <- ctFit(data = ctExample3, ctmodelobj = model, objective = "Kalman",
#  stationary = c("T0VAR"))
# 
# fit <- ctCI(fit, confidenceintervals = 'DRIFT')
# 
# summary(fit)$omxsummary$CI
# ## End(Not run)

Run the code above in your browser using DataLab