Learn R Programming

⚠️There's a newer version (3.10.2) of this package.Take me there.

See the NEWS file for recent updates!

ctsem allows for easy specification and fitting of a range of continuous and discrete time dynamic models, including multiple indicators (dynamic factor analysis), multiple, potentially higher order processes, and time dependent (varying within subject) and time independent (not varying within subject) covariates. Classic longitudinal models like latent growth curves and latent change score models are also possible. Version 1 of ctsem provided SEM based functionality by linking to the OpenMx software, allowing mixed effects models (random means but fixed regression and variance parameters) for multiple subjects. For version 2 of the R package ctsem, we include a Bayesian specification and fitting routine that uses the Stan probabilistic programming language, via the rstan package in R. This allows for all parameters of the dynamic model to individually vary, using an estimated population mean and variance, and any time independent covariate effects, as a prior. ctsem is documented in a JSS publication (Driver, Voelkle, Oud, 2017), and in R vignette form at https://cran.r-project.org/package=ctsem/vignettes/ctsem.pdf . The Bayesian approach is outlined in Introduction to Hierarchical Continuous Time Dynamic Modelling with ctsem, at https://github.com/cdriveraus/ctsem/raw/master/vignettes/hierarchicalmanual.pdf . To cite ctsem please use the citation(“ctsem”) command in R.

To install the github version, use:

remotes::install_github('cdriveraus/ctsem', INSTALL_opts = "--no-multiarch", dependencies = c("Depends", "Imports"))

Troubleshooting Rstan / Rtools install for Windows:

Ensure recent version of R and Rtools is installed.

try including these lines in home/.R/makevars. :

CXX14 = g++ -std=c++1y
CXX14FLAGS = -O3 -Wno-unused-variable -Wno-unused-function

If makevars does not exist, run this code within R:

dotR <- file.path(Sys.getenv("HOME"), ".R")
if (!file.exists(dotR)) dir.create(dotR)
M <- file.path(dotR, ifelse(.Platform$OS.type == "windows", "Makevars.win", "Makevars"))
if (!file.exists(M)) file.create(M)
cat("\nCXX14FLAGS=-O3 -march=native -mtune=native",
    if( grepl("^darwin", R.version$os)) "CXX14FLAGS += -arch x86_64 -ftemplate-depth-256" else
    if (.Platform$OS.type == "windows") "CXX11FLAGS=-O3 -march=native -mtune=native" else
    "CXX14FLAGS += -fPIC",
    file = M, sep = "\n", append = TRUE)

In case of compile errors like g++ not found, ensure the devtools package is installed:

install.packages('devtools')

and include the following in your .Rprofile

library(devtools)
Sys.setenv(PATH = paste("C:/Rtools/bin", Sys.getenv("PATH"), sep=";"))
Sys.setenv(PATH = paste("C:\\Rtools\\mingw_64\\bin", Sys.getenv("PATH"), sep=";"))
Sys.setenv(BINPREF = "C:/Rtools/mingw_$(WIN)/bin/")

Copy Link

Version

Install

install.packages('ctsem')

Monthly Downloads

612

Version

3.0.3

License

GPL-3

Issues

Pull Requests

Stars

Forks

Maintainer

Charles Driver

Last Published

September 11th, 2019

Functions in ctsem (3.0.3)

ctFit

Fit a ctsem object
ctDensity

ctDensity
ctExample3

ctExample3
ctExample2level

ctExample2level
ctExample2

ctExample2
ctKalman

ctKalman
ctCI

ctCI Computes confidence intervals on specified parameters / matrices for already fitted ctsem fit object.
ctIntervalise

Converts absolute times to intervals for wide format ctsem panel data
ctExample4

ctExample4
ctPlot

ctPlot
ctMultigroupFit

Fits a multiple group continuous time model.
ctExample1

ctExample1
ctModel

Define a ctsem model
ctLongToWide

ctLongToWide Restructures time series / panel data from long format to wide format for ctsem analysis
ctExample1TIpred

ctExample1TIpred
ctStanContinuousPars

ctStanContinuousPars
ctDiscretiseData

Discretise long format continuous time (ctsem) data to specific timestep.
ctDiscretePars

ctDiscretePars
ctDocs

Get documentation pdf for ctsem
ctGenerateFromFit

Generates data according to the model estimated in a ctsemFit object.
msquare

Right multiply a matrix by its transpose.
ctStanGenerateFromFit

Add a $generated object to ctstanfit object, with random data generated from posterior of ctstanfit object
ctWideNames

ctWideNames sets default column names for wide ctsem datasets. Primarily intended for internal ctsem usage.
stanWplot

Runs stan, and plots sampling information while sampling.
ctWideToLong

ctWideToLong Convert ctsem wide to long format
ctIndplot

ctIndplot
plot.ctKalman

Plots Kalman filter output from ctKalman.
ctStanKalman

Get Kalman filter estimates from a ctStanFit object
ctStanTIpredeffects

Get time independent predictor effect estimates
ctPostPredict

Posterior predictive type check for ctsemFit.
ctStanDiscreteParsPlot

ctStanDiscreteParsPlot
ctPoly

Plots uncertainty bands with shading
ctModelFromFit

Extract a ctsem model structure with parameter values from a ctsem fit object.
ctPlotArray

Plots three dimensional y values for quantile plots
ctModelLatex

Generate and optionally compile latex equation of subject level ctsem model.
ctGenerate

ctGenerate
plot.ctsemMultigroupFit

Plot function for ctsemMultigroupFit object
ctsem

ctsem
ctstantestdat

ctstantestdat
ctStanDiscretePars

ctStanDiscretePars
ctStanPostPredict

Compares model implied density and values to observed, for a ctStanFit object.
ctStanUpdModel

Update an already compiled and fit ctStanFit object
summary.ctsemMultigroupFit

Summary function for ctsemMultigroupFit object
stan_checkdivergences

Analyse divergences in a stanfit object
extract

Extract samples from a ctStanFit object
standatact_specificsubjects

Adjust standata from ctsem to only use specific subjects
inv_logit

Inverse logit
stanoptimis

Optimize / importance sample a stan or ctStan model.
ctStanFit

ctStanFit
ctStanModel

Convert a frequentist (omx) ctsem model specification to Bayesian (Stan).
ctStanParMatrices

Returns population system matrices from a ctStanFit object, and vector of values for free parameters.
datastructure

datastructure
ctstantestfit

ctstantestfit
ctRefineTo

ctRefineTo
ctStanTIpredMarginal

Plot marginal relationships between covariates and parameters for a ctStanFit object.
sdpcor2cov

sdcor2cov
summary.ctStanFit

summary.ctStanFit
ctStanParnames

ctStanParnames
plot.ctStanFit

plot.ctStanFit
ctStanPlotPost

ctStanPlotPost
plot.ctStanModel

Prior plotting
summary.ctsemFit

Summary function for ctsemFit object
isdiag

Diagnostics for ctsem importance sampling
longexample

longexample
stan_confidenceRegion

Extract functions of multiple variables from a stanfit object
stan_postcalc

Compute functions of matrices from samples of a stanfit object
plot.ctsemFit

Plotting function for object class ctsemFit
stan_reinitsf

Quickly initialise stanfit object from model and data
plot.ctsemFitMeasure

Misspecification plot using ctCheckFit output
stan_unconstrainsamples

Convert samples from a stanfit object to the unconstrained scale
ctDeintervalise

ctDeintervalise
Oscillating

Oscillating
Kalman

Kalman
AnomAuth

AnomAuth
ctCheckFit

Check absolute fit of ctFit or ctStanFit object.
ctCompareExpected

ctCompareExpected Compares model implied to observed means and covariances for panel data fit with ctsem.
ctCollapse

ctCollapse Easily collapse an array margin using a specified function.