Given a CTS of length \(T\) with range \(\mathcal{V}=\{1, 2, \ldots, r\}\),
\(\overline{X}_t=\{\overline{X}_1,\ldots, \overline{X}_T\}\), and the
corresponding binarized time series, \(\overline{\boldsymbol Y}_t=\{\overline{\boldsymbol Y}_1, \ldots, \overline{\boldsymbol Y}_T\}\),
the function constructs the rate evolution graph. Specifically, consider the
series of cumulated sums given by \(\overline{\boldsymbol C}_t=\{\overline{\boldsymbol C}_1, \ldots, \overline{\boldsymbol C}_T\}\), with
\(\overline{\boldsymbol C}_k=\sum_{s=1}^{k}\overline{\boldsymbol Y}_s\),
\(k=1,\ldots,T\). The rate evolution graph displays a standard time series
plot for each one of the components of \(\overline{\boldsymbol C}_t\)
simultaneously in one graph.