50% off | Unlimited Data & AI Learning
Get 50% off unlimited learning

cudia (version 0.1)

cudia: CUDIA: cross-level imputation framework

Description

Estimate the CUDIA model parameters, then output cross-level imputed values. The default algorithm is set to the Bregman deterministic clustering algorithm in the referenced paper. Currently, only Gaussian-type data are supported.

Usage

cudia(formula, data, K, ...)

Arguments

formula
a symbolic description of the model to be fit. e.g. x~y+z means that the aggregate-level summary x is cross-level imputed using individual-level data y and z.
data
a data frame object in the model.
K
a number of intrinsic clusters.
...
other algorithm operational parameters

Value

An object of class cudia, basically a list including elements
indiv
original individual-level data
fitted.values
cross-level imputed aggregated data
theta
parameter vectors for individual-level clusters
eta
a parameter vector for aggregate-level clusters
Nk
estimated cluster sizes
xlab
variable names of individual-level data

References

Y. Park and J. Ghosh, CUDIA: Probabilistic Cross-level Imputation using Individual Auxiliary Information, ACM Trans-IST, 2012.

See Also

print, plot methods

Examples

Run this code
data(cudia_simul,package="cudia")
mod.sim <- cudia(aggr~indiv,cudia_simul,K=3)
summary(mod.sim)

Run the code above in your browser using DataLab