Estimate the CUDIA model parameters, then output cross-level imputed values.
The default algorithm is set to the Bregman deterministic clustering algorithm in the referenced paper. Currently, only Gaussian-type data are supported.
Usage
cudia(formula, data, K, ...)
Arguments
formula
a symbolic description of the model to be fit. e.g. x~y+z means that the aggregate-level summary x is cross-level imputed using individual-level data y and z.
data
a data frame object in the model.
K
a number of intrinsic clusters.
...
other algorithm operational parameters
Value
An object of class cudia, basically a list including elements
indiv
original individual-level data
fitted.values
cross-level imputed aggregated data
theta
parameter vectors for individual-level clusters
eta
a parameter vector for aggregate-level clusters
Nk
estimated cluster sizes
xlab
variable names of individual-level data
References
Y. Park and J. Ghosh, CUDIA: Probabilistic Cross-level Imputation using Individual Auxiliary Information, ACM Trans-IST, 2012.