Train a Support Vector Machine model for classification or regression tasks.
cuml_svm(x, ...)# S3 method for default
cuml_svm(x, ...)
# S3 method for data.frame
cuml_svm(
x,
y,
cost = 1,
kernel = c("rbf", "tanh", "polynomial", "linear"),
gamma = NULL,
coef0 = 0,
degree = 3L,
tol = 0.001,
max_iter = NULL,
nochange_steps = 1000L,
cache_size = 1024,
epsilon = 0.1,
sample_weights = NULL,
cuml_log_level = c("off", "critical", "error", "warn", "info", "debug", "trace"),
...
)
# S3 method for matrix
cuml_svm(
x,
y,
cost = 1,
kernel = c("rbf", "tanh", "polynomial", "linear"),
gamma = NULL,
coef0 = 0,
degree = 3L,
tol = 0.001,
max_iter = NULL,
nochange_steps = 1000L,
cache_size = 1024,
epsilon = 0.1,
sample_weights = NULL,
cuml_log_level = c("off", "critical", "error", "warn", "info", "debug", "trace"),
...
)
# S3 method for formula
cuml_svm(
formula,
data,
cost = 1,
kernel = c("rbf", "tanh", "polynomial", "linear"),
gamma = NULL,
coef0 = 0,
degree = 3L,
tol = 0.001,
max_iter = NULL,
nochange_steps = 1000L,
cache_size = 1024,
epsilon = 0.1,
sample_weights = NULL,
cuml_log_level = c("off", "critical", "error", "warn", "info", "debug", "trace"),
...
)
# S3 method for recipe
cuml_svm(
x,
data,
cost = 1,
kernel = c("rbf", "tanh", "polynomial", "linear"),
gamma = NULL,
coef0 = 0,
degree = 3L,
tol = 0.001,
max_iter = NULL,
nochange_steps = 1000L,
cache_size = 1024,
epsilon = 0.1,
sample_weights = NULL,
cuml_log_level = c("off", "critical", "error", "warn", "info", "debug", "trace"),
...
)
Depending on the context:
* A __data frame__ of predictors. * A __matrix__ of predictors. * A __recipe__ specifying a set of preprocessing steps * created from [recipes::recipe()]. * A __formula__ specifying the predictors and the outcome.
Optional arguments; currently unused.
A numeric vector (for regression) or factor (for classification) of desired responses.
A positive number for the cost of predicting a sample within or on the wrong side of the margin. Default: 1.
Type of the SVM kernel function (must be one of "rbf", "tanh", "polynomial", or "linear"). Default: "rbf".
The gamma coefficient (only relevant to polynomial, RBF, and tanh kernel functions, see explanations below). Default: 1 / (num features).
The following kernels are implemented: - RBF K(x_1, x_2) = exp(-gamma |x_1-x_2|^2) - TANH K(x_1, x_2) = tanh(gamma <x_1,x_2> + coef0) - POLYNOMIAL K(x_1, x_2) = (gamma <x_1,x_2> + coef0)^degree - LINEAR K(x_1,x_2) = <x_1,x_2>, where < , > denotes the dot product.
The 0th coefficient (only applicable to polynomial and tanh kernel functions, see explanations below). Default: 0.
The following kernels are implemented: - RBF K(x_1, x_2) = exp(-gamma |x_1-x_2|^2) - TANH K(x_1, x_2) = tanh(gamma <x_1,x_2> + coef0) - POLYNOMIAL K(x_1, x_2) = (gamma <x_1,x_2> + coef0)^degree - LINEAR K(x_1,x_2) = <x_1,x_2>, where < , > denotes the dot product.
Degree of the polynomial kernel function (note: not applicable to other kernel types, see explanations below). Default: 3.
The following kernels are implemented: - RBF K(x_1, x_2) = exp(-gamma |x_1-x_2|^2) - TANH K(x_1, x_2) = tanh(gamma <x_1,x_2> + coef0) - POLYNOMIAL K(x_1, x_2) = (gamma <x_1,x_2> + coef0)^degree - LINEAR K(x_1,x_2) = <x_1,x_2>, where < , > denotes the dot product.
Tolerance to stop fitting. Default: 1e-3.
Maximum number of outer iterations in SmoSolver. Default: 100 * (num samples).
Number of steps with no change w.r.t convergence. Default: 1000.
Size of kernel cache (MiB) in device memory. Default: 1024.
Espsilon parameter of the epsilon-SVR model. There is no penalty for points that are predicted within the epsilon-tube around the target values. Please note this parameter is only relevant for regression tasks. Default: 0.1.
Optional weight assigned to each input data point.
Log level within cuML library functions. Must be one of "off", "critical", "error", "warn", "info", "debug", "trace". Default: off.
A formula specifying the outcome terms on the left-hand side, and the predictor terms on the right-hand side.
When a __recipe__ or __formula__ is used, data
is
specified as a __data frame__ containing the predictors and (if
applicable) the outcome.
A SVM classifier / regressor object that can be used with the 'predict' S3 generic to make predictions on new data points.
# NOT RUN {
library(cuml)
# Classification
model <- cuml_svm(
formula = Species ~ .,
data = iris,
kernel = "rbf"
)
predictions <- predict(model, iris[-which(names(iris) == "Species")])
# Regression
model <- cuml_svm(
formula = mpg ~ .,
data = mtcars,
kernel = "rbf"
)
predictions <- predict(model, mtcars)
# }
Run the code above in your browser using DataLab