Dimensionality reduction using Truncated Singular Value Decomposition.
cuml_tsvd(
x,
n_components = 2L,
eig_algo = c("dq", "jacobi"),
tol = 1e-07,
n_iters = 15L,
transform_input = TRUE,
cuml_log_level = c("off", "critical", "error", "warn", "info", "debug", "trace")
)
The input matrix or dataframe. Each data point should be a row and should consist of numeric values only.
Desired dimensionality of output data. Must be strictly
less than ncol(x)
(i.e., the number of features in input data).
Default: 2.
Eigen decomposition algorithm to be applied to the covariance matrix. Valid choices are "dq" (divid-and-conquer method for symmetric matrices) and "jacobi" (the Jacobi method for symmetric matrices). Default: "dq".
Tolerance for singular values computed by the Jacobi method. Default: 1e-7.
Maximum number of iterations for the Jacobi method. Default: 15.
If TRUE, then compute an approximate representation of the input data. Default: TRUE.
Log level within cuML library functions. Must be one of "off", "critical", "error", "warn", "info", "debug", "trace". Default: off.
A TSVD model object with the following attributes:
- "components": a matrix of n_components
rows to be used for
dimensionalitiy reduction on new data points.
- "explained_variance": (only present if "transform_input" is set to TRUE)
amount of variance within the input data explained by each component.
- "explained_variance_ratio": (only present if "transform_input" is set to
TRUE) fraction of variance within the input data explained by each
component.
- "singular_values": The singular values corresponding to each component.
The singular values are equal to the 2-norms of the n_components
variables in the lower-dimensional space.
- "tsvd_params": opaque pointer to TSVD parameters which will be used for
performing inverse transforms.
# NOT RUN {
library(cuml)
iris.tsvd <- cuml_tsvd(iris[1:4], n_components = 2)
print(iris.tsvd)
# }
Run the code above in your browser using DataLab