
Calculate the positive predictive value (PPV) from true positives, false positives, true negatives and false negatives. The inputs must be vectors of equal length. ppv = tp / (tp + fp)
ppv(tp, fp, tn, fn, ...)
(numeric) number of true positives.
(numeric) number of false positives.
(numeric) number of true negatives.
(numeric) number of false negatives.
for capturing additional arguments passed by method.
Other metric functions: F1_score
,
abs_d_ppv_npv
,
abs_d_sens_spec
, accuracy
,
cohens_kappa
, cutpoint
,
false_omission_rate
,
misclassification_cost
, npv
,
odds_ratio
, p_chisquared
,
plr
, precision
,
prod_ppv_npv
, prod_sens_spec
,
recall
, risk_ratio
,
sensitivity
, specificity
,
sum_ppv_npv
, sum_sens_spec
,
total_utility
, tpr
,
tp
, youden
# NOT RUN {
ppv(10, 5, 20, 10)
ppv(c(10, 8), c(5, 7), c(20, 12), c(10, 18))
# }
Run the code above in your browser using DataLab