Calculate the positive predictive value (PPV) from
true positives, false positives, true negatives and false negatives.
The inputs must be vectors of equal length.
ppv = tp / (tp + fp)
ppv(tp, fp, tn, fn, ...)
(numeric) number of true positives.
(numeric) number of false positives.
(numeric) number of true negatives.
(numeric) number of false negatives.
for capturing additional arguments passed by method.
Other metric functions:
F1_score()
,
Jaccard()
,
abs_d_ppv_npv()
,
abs_d_sens_spec()
,
accuracy()
,
cohens_kappa()
,
cutpoint()
,
false_omission_rate()
,
metric_constrain()
,
misclassification_cost()
,
npv()
,
odds_ratio()
,
p_chisquared()
,
plr()
,
precision()
,
prod_ppv_npv()
,
prod_sens_spec()
,
recall()
,
risk_ratio()
,
roc01()
,
sensitivity()
,
specificity()
,
sum_ppv_npv()
,
sum_sens_spec()
,
total_utility()
,
tp()
,
tpr()
,
youden()
ppv(10, 5, 20, 10)
ppv(c(10, 8), c(5, 7), c(20, 12), c(10, 18))
Run the code above in your browser using DataLab