cv.hybrid(y, x, penalty = "mcp", nfold = 5,
kappa = 1/2.7, nlambda = 100, lambda.min = 0.01,
epsilon = 1e-3, maxit = 1e+3, seed = 1000)
We also use the CV-AUC approach to select tuning parameter for models using the Lasso-concave hybrid penalty.
Zou, H., Li, R. (2008). One-step Sparse Estimates in Nonconcave Penalized Likelihood Models. Ann Stat, 364: 1509-1533.
Breheny, P., Huang, J. (2011). Coordinate Descent Algorithms for Nonconvex Penalized Regression, with Application to Biological Feature Selection. Ann Appl Stat, 5(1), 232-253.
Jiang, D., Huang, J., Zhang, Y. (2011). The Cross-validated AUC for MCP-Logistic Regression with High-dimensional Data. Stat Methods Med Res, online first, Nov 28, 2011.
cvplogistic
, hybrid.logistic
,
cv.cvplogistic
, path.plot
set.seed(10000)
n=100
y=rbinom(n,1,0.4)
p=10
x=matrix(rnorm(n*p),n,p)
## Lasso-concave hybrid using MCP penalty
out=cv.hybrid(y, x, "mcp")
## Lasso-concave hybrid using SCAD penalty
## out=cv.hybrid(y, x, "scad")
Run the code above in your browser using DataLab