glm
) of this data set yields to M.
Thus the conventional squared correlation coefficient, $r^2$, can be calculated:
cvq2()
, looq2()
and q2()
.
In opposite $\nu = 0$ is fixed while calculating the rmse in relation to the model calibration.In case, the input is a comparison of observed and predicted values only (II), $r^2$ respective $q^2$ as well as their rmse are calculated immediately for these data. Neither a model M is generated nor a cross-validation is applied.library(cvq2)
data(cvq2.sample.A)
result <- cvq2( cvq2.sample.A, y ~ x1 + x2 )
result
data(cvq2.sample.B)
result <- cvq2( cvq2.sample.B, y ~ x, nFold = 3 )
result
data(cvq2.sample.B)
result <- cvq2( cvq2.sample.B, y ~ x, nFold = 3, nRun = 5 )
result
data(cvq2.sample.A)
data(cvq2.sample.A_pred)
result <- q2( cvq2.sample.A, cvq2.sample.A_pred, y ~ x1 + x2 )
result
data(cvq2.sample.C)
result <- calibPow( cvq2.sample.C )
result
data(cvq2.sample.D)
result <- predPow( cvq2.sample.D, obs_mean="observed_mean" )
result
Run the code above in your browser using DataLab