opar <- par(mfrow=c(2,4))
x <- seq(0,1,0.05)
phi <- c(pi/6,pi/4,-pi/6)
Data <- matrix(c(x^2*10,(x^2-10*x)*4,(x+10)*1.5),ncol=3)
## Data <- matrix(c(rnorm(99)*10,rnorm(99)*4,rnorm(99)*1.5),ncol=3)
lim <- range(c(Data,-Data))*1.5
RD <- Data %*% rotL(phi[1],1,2) # !! # rotate around z-axis
RD2 <- RD %*% rotL(phi[2],2,3) # !! # rotate further around x
RD3 <- RD2 %*% rotL(phi[3],1,2) # !! # rotate back around z
plot(Data[,-3],xlim=lim,ylim=lim,xlab="x",ylab="y",pty="s")
plot(RD[,-3],xlim=lim,ylim=lim,xlab="RD x",ylab="y",pty="s",pch=5,col="red")
plot(RD2[,-3],xlim=lim,ylim=lim,xlab="RD2 x",ylab="y",pch=6,col="blue")
plot(RD3[,-3],xlim=lim,ylim=lim,xlab="RD3 x",ylab="RD3 y",col="magenta")
plot(Data[,1],RD3[,1])
plot(Data[,2],RD3[,2])
plot(Data[,3],RD3[,3])
m <- rotL(phi[1],1,2) %*% rotL(phi[2],2,3) %*% rotL(phi[3],1,2) # !! #
round(m %*% t(m),2) #!! # composite rotation matrix and orthogonality, should be diag(3)
eye <- c(0.5,2.5,4)
re <- rotV(eye)
getAp(re) #$A [1] -9.805807e-01 1.961161e-01 -1.193931e-16
# $phi [1] 0.5674505
round(rotA(pi/1.5, c(1,1,1)),2) # 60 degrees around octant bisector
# [1,] 0 1 0 is permutation of axes 1 -> 2 -> 3 -> 1
# [2,] 0 0 1
# [3,] 1 0 0
Run the code above in your browser using DataLab