Learn R Programming

cytofkit (version 1.4.8)

ClusterX: Fast clustering by automatic search and find of density peaks

Description

This package implement the clustering algorithm described by Alex Rodriguez and Alessandro Laio (2014) with improvements of automatic peak detection and parallel implementation

Usage

ClusterX(data, dimReduction = NULL, outDim = 2, dc, gaussian = TRUE, alpha = 0.001, detectHalos = FALSE, SVMhalos = FALSE, parallel = FALSE, nCore = 4)

Arguments

data
A data matrix for clustering.
dimReduction
Dimenionality reduciton method.
outDim
Number of dimensions will be used for clustering.
dc
Distance cutoff value.
gaussian
If apply gaussian to esitmate the density.
alpha
Signance level for peak detection.
detectHalos
If detect the halos.
SVMhalos
Run SVM on cores to assign halos.
parallel
If run the algorithm in parallel.
nCore
Number of cores umployed for parallel compution.

Value

a list

Details

ClusterX works on low dimensional data analysis (Dimensionality less than 5). If input data is of high diemnsional, t-SNE is conducted to reduce the dimensionality.

Examples

Run this code
iris_unique <- unique(iris) # Remove duplicates
data <- as.matrix(iris_unique[,1:4])
ClusterXRes <- ClusterX(data)

Run the code above in your browser using DataLab