Learn R Programming

cytofkit (version 1.4.8)

cytof_dimReduction: Dimension reduction for high dimensional data

Description

Apply dimension reduction on the cytof expression data, with method pca, tsne, diffusionmap or isomap.

Usage

cytof_dimReduction(data, method = c("tsne", "pca", "isomap", "diffusionmap", "NULL"), distMethod = "euclidean", out_dim = 2, tsneSeed = 42, isomap_k = 5, isomap_ndim = NULL, isomapFragmentOK = TRUE, ...)

Arguments

data
Input expression data matrix.
method
Method chosed for dimensition reduction, must be one of isomap, pca , diffusionmap or tsne.
distMethod
Method for distance calcualtion, default is "euclidean", other choices like "manhattan", "cosine", "rankcor"....
out_dim
The dimensionality of the output.
tsneSeed
Set a seed if you want reproducible t-SNE results.
isomap_k
Number of shortest dissimilarities retained for a point, parameter for isomap method.
isomap_ndim
Number of axes in metric scaling, parameter for isomap method.
isomapFragmentOK
What to do if dissimilarity matrix is fragmented, parameter for isomap method.
...
Other parameters passed to the method, check Rtsne, DiffusionMap, isomap.

Value

a matrix of the dimension reducted data, with colnames method_ID, and rownames same as the input data.

Examples

Run this code
data(iris)
in_data <- iris[, 1:4]
out_data <- cytof_dimReduction(in_data, method = "tsne")

Run the code above in your browser using DataLab