Learn R Programming

cytofkit (version 1.4.8)

cytof_progression: Progression estimation of cytof expression data

Description

Infer the progression based on the relationship of cell subsets estimated using ISOMAP or Diffusion map.

Usage

cytof_progression(data, cluster, method = c("diffusionmap", "isomap", "NULL"), distMethod = "euclidean", out_dim = 2, clusterSampleMethod = c("ceil", "all", "fixed", "min"), clusterSampleSize = 500, sampleSeed = 123)

Arguments

data
Expression data matrix.
cluster
A vector of cluster results for the data.
method
Method for estimation of cell progression, isomap or diffusionmap.
distMethod
Method for distance calcualtion, default is "euclidean", other choices like "manhattan", "cosine", "rankcor".
out_dim
Number of transformed dimenions choosed for output.
clusterSampleMethod
Cluster sampling method including ceil, all, min, fixed. The default option is ceil, up to a fixed number (specified by fixedNum) of cells are sampled without replacement from each cluster and combined for analysis. all: all cells from each cluster are combined for analysis. min: The minimum number of cells among all clusters are sampled from cluster and combined for analysis. fixed: a fixed num (specified by fixedNum) of cells are sampled (with replacement when the total number of cell is less than fixedNum) from each cluster and combined for analysis.
clusterSampleSize
The number of cells to be sampled from each cluster.
sampleSeed
The seed for random down sample of the clusters.

Value

a list includes sampleData, sampleCluster and progressionData.

Examples

Run this code
d<-system.file('extdata', package='cytofkit')
fcsFile <- list.files(d, pattern='.fcs$', full=TRUE)
parameters <- list.files(d, pattern='.txt$', full=TRUE)
markers <- as.character(read.table(parameters, sep = "\t", header = TRUE)[, 1])
xdata <- cytof_exprsMerge(fcsFile, markers = markers, mergeMethod = 'fixed', fixedNum = 2000)
clusters <- cytof_cluster(xdata = xdata, method = "Rphenograph")
prog <- cytof_progression(data = xdata, cluster = clusters, clusterSampleSize = 100)
d <- as.data.frame(cbind(prog$progressionData, cluster = factor(prog$sampleCluster)))
cytof_clusterPlot(data =d, xlab = "diffusionmap_1", ylab="diffusionmap_2", cluster = "cluster", sampleLabel = FALSE)

Run the code above in your browser using DataLab