Learn R Programming

cytofkit (version 1.4.8)

cytof_progressionPlot: Progression plot

Description

Plot the expression trend along the estimated cell progressing order

Usage

cytof_progressionPlot(data, markers, clusters, orderCol = "isomap_1", clusterCol = "cluster", reverseOrder = FALSE, addClusterLabel = TRUE, clusterLabelSize = 5, segmentSize = 0.5, min_expr = NULL, trend_formula = "expression ~ sm.ns(Pseudotime, df=3)")

Arguments

data
The data frame for progression plot.
markers
The column names of the selected markers for visualization.
clusters
Selecte clusters for plotting, defauls select all.
orderCol
The column name of the estimated cell progression order.
clusterCol
The column name of the cluster results.
reverseOrder
If reverse the value of orderCol.
addClusterLabel
If add the cluster label on the plot.
clusterLabelSize
The size of the cluster label.
segmentSize
The size of the cluster label arrow.
min_expr
the threshold of the minimal expression value for markers.
trend_formula
a symbolic description of the model to be fit.

Value

a ggplot2 object

Examples

Run this code
m1 <- c(rnorm(300, 10, 2), rnorm(400, 4, 2), rnorm(300, 7))
m2 <- c(rnorm(300, 4), rnorm(400, 16), rnorm(300, 10, 3))
m3 <- c(rnorm(300, 16), rnorm(400, 40, 3), rnorm(300, 10))
m4 <- c(rnorm(300, 7, 3), rnorm(400, 30, 2), rnorm(300, 10))
m5 <- c(rnorm(300, 27), rnorm(400, 40, 1),rnorm(300, 10))
c <- c(rep(1,300), rep(2,400), rep(3,300))
rnames <- paste(paste('sample_', c('A','B','C','D'), sep = ''), 
rep(1:250,each = 4), sep='_') 
exprs_cluster <- data.frame(cluster = c, m1 = m1, m2 = m2, m3 = m3, m4 = m4, isomap_1 = m5)
row.names(exprs_cluster) <- sample(rnames, 1000)
cytof_progressionPlot(exprs_cluster, markers = c("m1","m2","m3","m4"))

Run the code above in your browser using DataLab