if (interactive()) {
# Create a wide dataset with x = 2019 and y = 2023 trade values
trade_wide_2019 <- d3po::trade[d3po::trade$year == 2019L, c("reporter", "trade")]
trade_wide_2019 <- aggregate(trade ~ reporter, data = trade_wide_2019, FUN = sum)
trade_wide_2023 <- d3po::trade[d3po::trade$year == 2023L, c("reporter", "trade")]
trade_wide_2023 <- aggregate(trade ~ reporter, data = trade_wide_2023, FUN = sum)
trade_wide <- merge(
trade_wide_2019,
trade_wide_2023,
by = "reporter",
suffixes = c("_2019", "_2023")
)
# my_pal <- tintin::tintin_pal(option = "red_rackhams_treasure")(7)
# [1] "#2C8560" "#50B78F" "#6A785A" "#98BF8C" "#B95D59" "#DCC67D" "#F35A54"
my_pal <- c("#2C8560", "#50B78F", "#6A785A", "#98BF8C", "#B95D59", "#DCC67D", "#F35A54")
d3po(trade_wide, width = 800, height = 600) %>%
po_scatter(daes(x = trade_2019, y = trade_2023, group = reporter, color = my_pal)) %>%
po_labels(
x = "Trade in 2019 (USD billion)",
y = "Trade in 2023 (USD billion)",
title = "Trade Volume by Country in 2019 and 2023"
)
}
Run the code above in your browser using DataLab