if (interactive()) {
trade_by_continent <- d3po::trade[d3po::trade$year == 2023L, ]
trade_by_continent <- aggregate(trade ~ reporter_continent, data = trade_by_continent, FUN = sum)
# my_pal <- tintin::tintin_pal(option = "The Secret of the Unicorn")(7)
# [1] "#0A9F5F" "#0C8FA0" "#3487B6" "#46AE5E" "#66A2A3" "#A7B7A9" "#BEB670"
my_pal <- c("#0A9F5F", "#0C8FA0", "#3487B6", "#46AE5E", "#66A2A3", "#A7B7A9", "#BEB670")
names(my_pal) <- c(
"Africa", "Antarctica", "Asia",
"Europe", "North America", "Oceania", "South America"
)
d3po(trade_by_continent, width = 800, height = 600) %>%
po_treemap(daes(
size = trade, group = reporter_continent,
color = my_pal, tiling = "Squarify"
)) %>%
po_labels(title = "Trade Share by Continent in 2023")
}
Run the code above in your browser using DataLab