Learn R Programming

dad (version 4.1.6)

matddjensen: Matrix of divergences between discrete probability densities given samples

Description

Computes the matrix of the Jensen-Shannon divergences between several multivariate or univariate discrete probability distributions, estimated from samples.

Usage

matddjensen(x)

Value

Positive symmetric matrix whose order is equal to the number of data frames (or distributions), consisting of the pairwise Jensen-Shannon divergences between the distributions.

Arguments

x

object of class "folder" containing the data. Its elements are data frames (one data frame per distribution) whose columns are factors.

Author

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Sabine Demotes-Mainard

References

Deza, M.M. and Deza E. (2013). Encyclopedia of distances. Springer.

See Also

ddjensen.

matddjensenpar for discrete probability densities, given the probabilities on the same support.

Examples

Run this code
# Example 1
x1 <- data.frame(x = factor(c("A", "A", "B", "B")))
x2 <- data.frame(x = factor(c("A", "A", "A", "B", "B")))
x3 <- data.frame(x = factor(c("A", "A", "B", "B", "B", "B")))
xf <- folder(x1, x2, x3)
matddhellinger(xf)

# Example 2
x1 <- data.frame(x = factor(c("A", "A", "A", "B", "B", "B")),
                 y = factor(c("a", "a", "a", "b", "b", "b")))                 
x2 <- data.frame(x = factor(c("A", "A", "A", "B", "B")),
                 y = factor(c("a", "a", "b", "a", "b")))
x3 <- data.frame(x = factor(c("A", "A", "B", "B", "B", "B")),
                 y = factor(c("a", "b", "a", "b", "a", "b")))
xf <- folder(x1, x2, x3)
matddhellinger(xf)

Run the code above in your browser using DataLab