Learn R Programming

dad (version 4.1.6)

print.fmdsd: Printing results of a multidimensional scaling analysis of probability densities

Description

Applies to an object of class "fmdsd". Prints the numeric results returned by the fmdsd function.

Usage

# S3 method for fmdsd
print(x, mean.print = FALSE, var.print = FALSE,
  cor.print = FALSE, skewness.print = FALSE, kurtosis.print = FALSE,
  digits = 2, ...)

Arguments

x

object of class "fmdsd", returned by the fmdsd function.

mean.print

logical. If TRUE, prints for each group the means and standard deviations of the variables and the norm of the density.

var.print

logical. If TRUE, prints for each group the variances and covariances of the variables.

cor.print

logical. If TRUE, prints for each group the correlations between the variables.

skewness.print

logical. If TRUE, prints for each group the skewness coefficients of the variables.

kurtosis.print

logical. If TRUE, prints for each group the kurtosis coefficients of the variables.

digits

numeric. Number of significant digits for the display of numeric results.

...

optional arguments to print methods.

Author

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

Details

By default, are printed the inertia explained by the nb.values (see fmdsd) first coordinates and the nb.factors (see fmdsd) coordinates of the densities.

References

Boumaza, R., Yousfi, S., Demotes-Mainard, S. (2015). Interpreting the principal component analysis of multivariate density functions. Communications in Statistics - Theory and Methods, 44 (16), 3321-3339.

See Also

fmdsd; plot.fmdsd; interpret.fmdsd; print.

Examples

Run this code
data(roses)
x <- roses[,c("Sha","Den","Sym","rose")]
rosesfold <- as.folder(x)
result <- fmdsd(rosesfold)
print(result)
print(result, mean.print = TRUE)

Run the code above in your browser using DataLab