Form the correlation matrix of order order whose
correlations follow the ar3 pattern. The resulting matrix
is banded.
mat.ar3(ARparameters, order)A banded correlation matrix whose elements follow an ar3 pattern.
Chris Brien
The correlations in the correlation matrix, corr say, are calculated
from the autoregressive parameters, ARparameters.
Let omega = 1 - ARparameters[2] - ARparameters[3] * (ARparameters[1] + ARparameters[3]).
Then the values in
the diagonal of corr (k = 1) are one;
the first subdiagonal band (k = 2) of corr are equal to
(ARparameters[1] + ARparameters[2]*ARparameters[3]) / omega;
the second subdiagonal band (k = 3) of corr are equal to
(ARparameters[1] * (ARparameters[1] + ARparameters[3]) +
ARparameters[2] * (1 - ARparameters[2])) / omega;
the subsequent subdiagonal bands, (k = 4:order), of corr are equal to
ARparameters[1]*corr[k-1] + ARparameters[2]*corr[k-2] + ARparameters[3]*corr[k-3].
mat.I, mat.J, mat.cor, mat.corg, mat.banded,
mat.exp, mat.gau,
mat.ar1, mat.ar2, mat.sar2,
mat.ma1, mat.ma2, mat.arma
corr <- mat.ar3(ARparameters = c(0.4, 0.2, 0.1), order = 4)
Run the code above in your browser using DataLab