# NOT RUN {
## Here we rerun the first example in
## \code{vignettes(pied-flycatcher-1)} with \code{residuals = TRUE}
## in order to sample the residuals and then use the \code{residuals()}
## function to summarize the posterior distributions. This is necessary
## because the output is too large to store inside the package.
## Load pied flycatcher data
data(pied_flycatchers_1)
## Create variables bounding the true load
pfdata$lower=ifelse(pfdata$load==0,log(.001),log(pfdata$load-.049))
pfdata$upper=log(pfdata$load+.05)
##### Model 1 #####
## Mean model
mymean=list(fixed=list(name="alpha",
formula=~ log(IVI) + broodsize + sex,
priors=list(c("dnorm",0,.001))))
## Dispersion model
mydisp=list(fixed=list(name="psi",
link="log",
formula=~broodsize + sex,
priors=list(c("dnorm",0,.001))))
## Set working directory
workingDir <- tempdir()
## Define list of arguments for jags.model()
jm.args <- list(file=file.path(workingDir,"pied_flycatcher_1_jags.R"),n.adapt=1000)
## Define list of arguments for coda.samples()
cs.args <- list(n.iter=5000,thin=20)
## Run the model using dalmatian
pfresults <- dalmatian(df=pfdata,
mean.model=mymean,
dispersion.model=mydisp,
jags.model.args=jm.args,
coda.samples.args=cs.args,
rounding=TRUE,
lower="lower",
upper="upper",
n.cores = 3,
residuals = TRUE,
overwrite = TRUE,
debug=FALSE)
## summarize residuals
res.pfresults <- residuals(object = pfresults)
# }
Run the code above in your browser using DataLab