# NOT RUN {
n.sim<-30 # Note in applications we would used higher values, i.e. >=10000
p0.expected<-0.05 # Expected control event rate
p1.expected<-p0.expected # Same as expected active event rate
p1.tolerable<-0.1 # Maximum tolerable active event rate
r<-1 # Allocation ratio
power<-0.9 # Power
alph<-0.025 # Significance level
range.of.p0<-seq(0.005,0.20,0.005)
# Risk difference
res<-simulations.modify.margin(p0.expected, p1.expected, p1.tolerable,
thresholds=c(Inf, 0.0125,0.025,0.05), range.of.p0=range.of.p0, sig.level.design=alph,
sig.level.analysis=alph, power=power, r=r, scale="RD", print.out=TRUE,
ran.seed=1, n.sim=n.sim)
alph.an<-c(0.01,0.015,0.02,0.025) # Significance level
res2<-simulations.modify.margin(p0.expected, p1.expected, p1.tolerable, thresholds=c(0.0125),
range.of.p0=range.of.p0, sig.level.design=alph, sig.level.analysis=alph.an,
power=power, r=r, scale="RD", print.out=TRUE, ran.seed=1, n.sim=n.sim)
# Risk ratio
res3<-simulations.modify.margin(p0.expected, p1.expected, p1.tolerable,
thresholds=c(Inf, log(1.25),log(1.5),log(2)), range.of.p0=range.of.p0,
sig.level.design=alph, sig.level.analysis=alph, power=power, r=r,
scale="RR", print.out=TRUE, ran.seed=1, n.sim=n.sim)
res4<-simulations.modify.margin(p0.expected, p1.expected, p1.tolerable, thresholds=log(1.25),
range.of.p0=range.of.p0, sig.level.design=alph, sig.level.analysis=alph.an,
power=power, r=r, scale="RR", print.out=TRUE, ran.seed=1, n.sim=n.sim)
# }
Run the code above in your browser using DataLab