Fine tuning function for the deep architecture
# S4 method for DArch
fineTuneDArch(darch, dataSet, dataSetValid = NULL,
numEpochs = 1, bootstrap = T, isBin = FALSE, isClass = TRUE,
stopErr = -Inf, stopClassErr = 101, stopValidErr = -Inf,
stopValidClassErr = 101, ...)
The number of training iterations
Whether to use bootstrapping to create validation data.
Indicates whether the output data must be interpreted as boolean
value. Default is FALSE
. If it is true, every value over 0.5 is
interpreted as 1 and under as 0.
Indicates whether the training is for a classification net.
When TRUE
then statistics for classification will be determind.
Default is TRUE
Stop criteria for the error on the train data. Default is
-Inf
Stop criteria for the classification error on the train
data. Default is 101
Stop criteria for the error on the validation data.
Default is -Inf
.
Stop criteria for the classification error on the
validation data. Default is 101
.
Additional parameters for the training function