Learn R Programming

⚠️There's a newer version (0.12.0) of this package.Take me there.

darch (version 0.9.1)

Package for deep architectures and Restricted-Bolzmann-Machines

Description

The darch package is build on the basis of the code from G. E. Hinton and R. R. Salakhutdinov (available under Matlab Code for deep belief nets : last visit: 01.08.2013). This package is for generating neural networks with many layers (deep architectures) and train them with the method introduced by the publications "A fast learning algorithm for deep belief nets" (G. E. Hinton, S. Osindero, Y. W. Teh) and "Reducing the dimensionality of data with neural networks" (G. E. Hinton, R. R. Salakhutdinov). This method includes a pre training with the contrastive divergence method publishing by G.E Hinton (2002) and a fine tuning with common known training algorithms like backpropagation or conjugate gradient.

Copy Link

Version

Monthly Downloads

17

Version

0.9.1

License

GPL-2

Issues

Pull Requests

Stars

Forks

Maintainer

Martin Drees

Last Published

March 16th, 2014

Functions in darch (0.9.1)

getExecOutput

newRBM

Constructor function for RBM object.
binSigmoidUnit

Binary sigmoid unit function.
getNumVisible

darch

Deep architectures in R
getGenWeightFunction

Returns the function for generating weight matrices.
getCancel

Returns the cancel value.
getStats

Returns the list of statistics for the network
preTrainDArch

getPosPhaseData

Returns the data for the positive phaes.
getLearnRateBiasVisible

Returns the learning rate for the visible biases.
addLayerField

Adds a field to a layer
setErrorFunction<-

crossEntropyError

Cross entropy error function
Net

Abtract class for neural networks.
getLearnRateBiases

getExecuteFunction

resetRBM

getFF

Returns if the weights are saved as ff objects
readMNIST

Function for generating ff files of the MNIST Database
linearUnitFunc

Calculates the linear neuron output no transfer function
getHiddenBiases

Returns the biases of the hidden units.
minimize

Minimize a differentiable multivariate function.
getExecOutputs

RBM

Class for Restricted-Bolzmann-Machine
getErrorFunction

fineTuneDArch

Fine tuning function for the deep architecture.
getFineTuneFunction

minimizeAutoencoder

Conjugate gradient for a autoencoder network
generateWeights

Generates a weight matrix.
generateRBMs

Generates the rbm's for the pre-training.
getCancelMessage

Returns the cancel message.
getOutput

addLayer

Adds a layer to the DArch object
setPosPhaseData<-

Sets the positive phase data for the training
setExecuteFunction<-

Sets the execution function for the network
setLayers<-

Sets the layers for the network
setFinalMomentum<-

sigmoidUnitDerivative

Sigmoid unit function with unit derivatives.
rbmUpdate

getLayerField

getLearnRateBiasHidden

Returns the learning rate for the hidden biases.
getFinalMomentum

getHiddenBiasesInc

Returns the update value for the biases of the hidden units.
getLearnRateWeights

Returns the learn rate of the weights.
getRBMList

setMomentum<-

getMomentum

getVisibleBiasesInc

Returns the update value for the biases of the visible units.
softmaxUnitDerivative

Softmax unit function with unit derivatives.
getLayerWeights

setLogLevel<-

mseError

Mean quared error function
getLayers

setVisibleBiasesInc<-

Sets the update value for the biases of the visible units
saveRBM

Saves a RBM network
addExecOutput

Adds an execution output for a DArch object
setNumVisible<-

Sets the number of visible units
getWeightInc

Returns the update value for the weights.
getNumHidden

linearUnitDerivative

Linear unit function with unit derivatives.
setLearnRateBiasVisible<-

Sets the learnig rates of the biases for the visible units
sigmUnitFuncSwitch

Calculates the neuron output with the sigmoid function
getVisibleBiases

Returns the biases of the visible units.
loadRBM

Loads a RBM network
saveDArch

Saves a DArch network
newDArch

runDArch

Execute the darch
setLayer<-

Sets a layer with the given index for the network
setHiddenBiasesInc<-

Sets the update value for the biases of the hidden units
setHiddenBiases<-

minimizeClassifier

Conjugate gradient for a classification network
setCancelMessage<-

Sets the cancel message.
setHiddenUnitFunction<-

Sets the unit function of the hidden units
setLearnRateBiasHidden<-

Sets the learnig rates of the biases for the hidden units
loadRBMFFWeights

Loads weigths and biases for a RBM network from a ffData file.
setRBMList<-

Sets the list of RBMs
setNumHidden<-

Sets the number of hidden units
removeLayerField

loadDArch

Loads a DArch network
setMomentumSwitch<-

setLayerFunction<-

Sets the function for a layer with the given index
getWeightCost

Returns the weigth cost for the training
rpropagation

Resilient-Backpropgation training for deep architectures.
setVisibleUnitFunction<-

Sets the unit function of the visible units
setFineTuneFunction<-

Sets the fine tuning function for the network
setWeights<-

getVisibleUnitStates

Returns a list with the states of the visible units.
makeStartEndPoints

Makes start- and end-points for the batches.
getLayerFunction

backpropagation

Backpropagation learning function
linearUnit

Linear unit function.
sigmoidUnit

Sigmoid unit function.
setVisibleBiases<-

setBatchSize<-

resetExecOutput

setWeightInc<-

Sets the update values for the weights
setLearnRateWeights<-

Sets the learning rate for the weights.
softmaxUnit

Softmax unit function.
setStats<-

Adds a list of statistics to the network
setCancel<-

Set whether the learning shall be canceled.
setLayerWeights<-

Sets the weights of a layer with the given index
setHiddenUnitStates<-

Sets the states of the hidden units
setWeightCost<-

Sets the weight costs for the training
quadraticError

Quadratic error function
setVisibleUnitStates<-

Sets the states of the visible units
resetDArch

setFF<-

Sets if the weights are saved as ff objects
getWeights

saveRBMFFWeights

Saves weights and biases of a RBM network into a ffData file.
setGenWeightFunction<-

Sets the function for generating weight matrices.
setUpdateFunction<-

getBatchSize

setOutput<-

setLearnRateBiases<-

Sets the learning rate for the biases
trainRBM

Trains a RBM with contrastive divergence
getLayer

getHiddenUnitStates

Returns a list with the states of the hidden units.
getMomentumSwitch

sigmUnitFunc

Calculates the neuron output with the sigmoid function
setLayerField<-

Sets a field in a layer.
getLogger

setLogger<-