
Last chance! 50% off unlimited learning
Sale ends in
duplicated
returns a logical vector indicating which rows of a
data.table
are duplicates of a row with smaller subscripts.unique
returns a data.table
with duplicated rows removed, by
columns specified in by
argument. When no by
then duplicated
rows by all columns are removed.
anyDuplicated
returns the index i
of the first duplicated
entry if there is one, and 0 otherwise.
uniqueN
is equivalent to length(unique(x))
when x is an
atomic vector
, and nrow(unique(x))
when x is a data.frame
or data.table
. The number of unique rows are computed directly without
materialising the intermediate unique data.table and is therefore faster and
memory efficient.
"duplicated"(x, incomparables=FALSE, fromLast=FALSE, by=seq_along(x), ...)
"unique"(x, incomparables=FALSE, fromLast=FALSE, by=seq_along(x), ...)
"anyDuplicated"(x, incomparables=FALSE, fromLast=FALSE, by=seq_along(x), ...)
uniqueN(x, by=if (is.list(x)) seq_along(x) else NULL, na.rm=FALSE)
uniqueN
accepts atomic vectors and data.frames
as well.duplicated = FALSE
.character
or integer
vector indicating which combinations
of columns from x
to use for uniqueness checks. By default all columns are
are being used. The was changed recently for consistency to data.frame methods.
In version < 1.9.8
default was key(x)
.FALSE
). Should missing values (including
NaN
) be removed?duplicated
returns a logical vector of length nrow(x)
indicating which rows are duplicates.unique
returns a data table with duplicated rows removed.anyDuplicated
returns a integer value with the index of first duplicate.
If none exists, 0L is returned.uniqueN
returns the number of unique elements in the vector,
data.frame
or data.table
.unique.data.frame
, paste
is not used to ensure
equality of floating point data. It is instead accomplished directly and is
therefore quite fast. data.table provides setNumericRounding
to
handle cases where limitations in floating point representation is undesirable.v1.9.4
introduces anyDuplicated
method for data.tables and is
similar to base in functionality. It also implements the logical argument
fromLast
for all three functions, with default value FALSE
.
setNumericRounding
, data.table
,
duplicated
, unique
, all.equal
,
fsetdiff
, funion
, fintersect
,
fsetequal
DT <- data.table(A = rep(1:3, each=4), B = rep(1:4, each=3),
C = rep(1:2, 6), key = "A,B")
duplicated(DT)
unique(DT)
duplicated(DT, by="B")
unique(DT, by="B")
duplicated(DT, by=c("A", "C"))
unique(DT, by=c("A", "C"))
DT = data.table(a=c(2L,1L,2L), b=c(1L,2L,1L)) # no key
unique(DT) # rows 1 and 2 (row 3 is a duplicate of row 1)
DT = data.table(a=c(3.142, 4.2, 4.2, 3.142, 1.223, 1.223), b=rep(1,6))
unique(DT) # rows 1,2 and 5
DT = data.table(a=tan(pi*(1/4 + 1:10)), b=rep(1,10)) # example from ?all.equal
length(unique(DT$a)) # 10 strictly unique floating point values
all.equal(DT$a,rep(1,10)) # TRUE, all within tolerance of 1.0
DT[,which.min(a)] # row 10, the strictly smallest floating point value
identical(unique(DT),DT[1]) # TRUE, stable within tolerance
identical(unique(DT),DT[10]) # FALSE
# fromLast=TRUE
DT <- data.table(A = rep(1:3, each=4), B = rep(1:4, each=3),
C = rep(1:2, 6), key = "A,B")
duplicated(DT, by="B", fromLast=TRUE)
unique(DT, by="B", fromLast=TRUE)
# anyDuplicated
anyDuplicated(DT, by=c("A", "B")) # 3L
any(duplicated(DT, by=c("A", "B"))) # TRUE
# uniqueN, unique rows on key columns
uniqueN(DT, by = key(DT))
# uniqueN, unique rows on all columns
uniqueN(DT)
# uniqueN while grouped by "A"
DT[, .(uN=uniqueN(.SD)), by=A]
# uniqueN's na.rm=TRUE
x = sample(c(NA, NaN, runif(3)), 10, TRUE)
uniqueN(x, na.rm = FALSE) # 5, default
uniqueN(x, na.rm=TRUE) # 3
Run the code above in your browser using DataLab