This is a data.table
method for the S3 generic stats::na.omit
. The internals are written in C for speed. See examples for benchmark timings.
bit64::integer64
type is also supported.
# S3 method for data.table
na.omit(object, cols=seq_along(object), invert=FALSE, ...)
A data.table with just the rows where the specified columns have no missing value in any of them.
A data.table
.
A vector of column names (or numbers) on which to check for missing values. Default is all the columns.
logical. If FALSE
omits all rows with any missing values (default). TRUE
returns just those rows with missing values instead.
Further arguments special methods could require.
The data.table
method consists of an additional argument cols
, which when specified looks for missing values in just those columns specified. The default value for cols
is all the columns, to be consistent with the default behaviour of stats::na.omit
.
It does not add the attribute na.action
as stats::na.omit
does.
data.table
DT = data.table(x=c(1,NaN,NA,3), y=c(NA_integer_, 1:3), z=c("a", NA_character_, "b", "c"))
# default behaviour
na.omit(DT)
# omit rows where 'x' has a missing value
na.omit(DT, cols="x")
# omit rows where either 'x' or 'y' have missing values
na.omit(DT, cols=c("x", "y"))
if (FALSE) {
# Timings on relatively large data
set.seed(1L)
DT = data.table(x = sample(c(1:100, NA_integer_), 5e7L, TRUE),
y = sample(c(rnorm(100), NA), 5e7L, TRUE))
system.time(ans1 <- na.omit(DT)) ## 2.6 seconds
system.time(ans2 <- stats:::na.omit.data.frame(DT)) ## 29 seconds
# identical? check each column separately, as ans2 will have additional attribute
all(sapply(1:2, function(i) identical(ans1[[i]], ans2[[i]]))) ## TRUE
}
Run the code above in your browser using DataLab