Learn R Programming

dataSDA (version 0.1.8)

interval_robust: Robust Statistics for Interval Data

Description

Functions to compute robust statistics for interval-valued data.

Usage

int_trimmed_mean(x, var_name, trim = 0.1, method = "CM", ...)

int_winsorized_mean(x, var_name, trim = 0.1, method = "CM", ...)

int_trimmed_var(x, var_name, trim = 0.1, method = "CM", ...)

int_winsorized_var(x, var_name, trim = 0.1, method = "CM", ...)

Value

A numeric matrix

Arguments

x

interval-valued data with symbolic_tbl class.

var_name

the variable name or the column location (multiple variables are allowed).

trim

the fraction (0 to 0.5) of observations to be trimmed from each end.

method

methods to calculate statistics: CM (default), VM, QM, SE, FV, EJD, GQ, SPT.

...

additional parameters

Author

Han-Ming Wu

Details

These functions provide robust alternatives to standard statistics:

  • int_trimmed_mean: Mean after trimming extreme values

  • int_winsorized_mean: Mean after winsorizing extreme values

  • int_trimmed_var: Variance after trimming extreme values

  • int_winsorized_var: Variance after winsorizing extreme values

Trimming vs Winsorizing:

  • Trimming: Remove extreme values

  • Winsorizing: Replace extreme values with less extreme values

See Also

int_mean int_var int_trimmed_mean

Examples

Run this code
data(mushroom.int)

# Trimmed mean (10% from each end)
int_trimmed_mean(mushroom.int, var_name = "Pileus.Cap.Width", trim = 0.1)

# Winsorized mean
int_winsorized_mean(mushroom.int, var_name = 2:3, trim = 0.05, method = "CM")

# Trimmed variance
int_trimmed_var(mushroom.int, var_name = c("Stipe.Length"), trim = 0.1)

Run the code above in your browser using DataLab