## S3 method for class 'table':
drRead(file, header = FALSE, sep = "", quote = "\\"'", dec = ".",
skip = 0, fill = !blank.lines.skip, blank.lines.skip = TRUE, comment.char = "#",
allowEscapes = FALSE, encoding = "unknown", autoColClasses = TRUE,
rowsPerBlock = 50000, postTransFn = identity, output = NULL, overwrite = FALSE,
params = NULL, packages = NULL, control = NULL, ...)
## S3 method for class 'csv':
drRead(file, header = TRUE, sep = ",",
quote = "\\"", dec = ".", fill = TRUE, comment.char = "", ...)
## S3 method for class 'csv2':
drRead(file, header = TRUE, sep = ";",
quote = "\\"", dec = ",", fill = TRUE, comment.char = "", ...)
## S3 method for class 'delim':
drRead(file, header = TRUE, sep = "\\t",
quote = "\\"", dec = ".", fill = TRUE, comment.char = "", ...)
## S3 method for class 'delim2':
drRead(file, header = TRUE, sep = "\\t",
quote = "\\"", dec = ",", fill = TRUE, comment.char = "", ...)
hdfsConn
object pointing to a text file on HDFS (see output
argument below)read.table
for each chunk being processed - see read.table
for more info. Most all have defauread.table
for more inforead.table
for more inforead.table
for more inforead.table
for more inforead.table
for more inforead.table
for more inforead.table
for more inforead.table
for more inforead.table
for more inforead.table
, but keeping the default of TRUE
is advantageous for speed.localDiskConn
object if input is a text file on local disk, or a hdfsConn<
overwrite = "backup"
to move the existing output to _bak)postTransFn
fn
(most should be taken care of automatically such that this is rarely necessary to specify)rhwatch
in RHIPE) - see rhipeControl
and localDiskContr
read.table
for more infocsvFile <- file.path(tempdir(), "iris.csv")
write.csv(iris, file = csvFile, row.names = FALSE, quote = FALSE)
irisTextConn <- localDiskConn(file.path(tempdir(), "irisText2"), autoYes = TRUE)
a <- drRead.csv(csvFile, output = irisTextConn, rowsPerBlock = 10)
Run the code above in your browser using DataLab