if (FALSE) # really long-running example
load(system.file("extdata/study_data.RData", package = "dataquieR"))
load(system.file("extdata/meta_data.RData", package = "dataquieR"))
a <- pipeline_vectorized(
fct = acc_margins, study_data = study_data,
meta_data = meta_data, label_col = LABEL,
key_var_names = c(group_vars = GROUP_VAR_OBSERVER)
)
b <- pipeline_vectorized(
fct = acc_margins, study_data = study_data,
meta_data = meta_data, label_col = LABEL
)
b_adj <-
pipeline_vectorized(
fct = acc_margins, study_data = study_data,
meta_data = meta_data, label_col = LABEL, co_vars = c("SEX_1", "AGE_1")
)
c <- pipeline_vectorized(
fct = acc_loess, study_data = study_data,
meta_data = meta_data, label_col = LABEL,
variable_roles = list(
resp_vars = list(VARIABLE_ROLES$PRIMARY),
group_vars = VARIABLE_ROLES$PROCESS
)
)
d <- pipeline_vectorized(
fct = acc_loess, study_data = study_data,
meta_data = meta_data, label_col = LABEL,
variable_roles = list(
resp_vars = list(VARIABLE_ROLES$PRIMARY, VARIABLE_ROLES$SECONDARY),
group_vars = VARIABLE_ROLES$PROCESS
)
)
e <- pipeline_vectorized(
fct = acc_margins, study_data = study_data,
meta_data = meta_data, label_col = LABEL,
key_var_names = c(group_vars = GROUP_VAR_OBSERVER), co_vars = "SEX_0"
)
f <- pipeline_vectorized(
fct = acc_margins, study_data = study_data,
meta_data = meta_data, label_col = LABEL,
key_var_names = c(group_vars = GROUP_VAR_OBSERVER), co_vars = "SEX_0",
result_groups = NULL
)
pipeline_recursive_result(f)
g <- pipeline_vectorized(
fct = acc_margins, study_data = study_data,
meta_data = meta_data, label_col = LABEL,
key_var_names = c(group_vars = GROUP_VAR_OBSERVER), co_vars = "SEX_0",
result_groups = c("co_vars")
)
g1 <- pipeline_vectorized(
fct = acc_margins, study_data = study_data,
meta_data = meta_data, label_col = LABEL,
key_var_names = c(group_vars = GROUP_VAR_OBSERVER), co_vars = "SEX_0",
result_groups = c("group_vars")
)
g2 <- pipeline_vectorized(
fct = acc_margins, study_data = study_data,
meta_data = meta_data, label_col = LABEL,
key_var_names = c(group_vars = GROUP_VAR_OBSERVER), co_vars = "SEX_0",
result_groups = c("group_vars", "co_vars")
)
g3 <- pipeline_vectorized(
fct = acc_margins, study_data = study_data,
meta_data = meta_data, label_col = LABEL,
key_var_names = c(group_vars = GROUP_VAR_OBSERVER), co_vars = "SEX_0",
result_groups = c("co_vars", "group_vars")
)
g4 <- pipeline_vectorized(
fct = acc_margins, study_data = study_data,
meta_data = meta_data, label_col = LABEL,
co_vars = "SEX_0", result_groups = c("co_vars")
)
meta_datax <- meta_data
meta_datax[9, "GROUP_VAR_DEVICE"] <- "v00011"
g5 <- pipeline_vectorized(
fct = acc_margins, study_data = study_data,
meta_data = meta_datax, label_col = LABEL,
co_vars = "SEX_0", result_groups = c("co_vars")
)
g6 <- pipeline_vectorized(
fct = acc_margins, study_data = study_data,
meta_data = meta_datax, label_col = LABEL,
co_vars = "SEX_0", result_groups = c("co_vars", "group_vars")
)
Run the code above in your browser using DataLab