# Nile

0th

Percentile

##### Flow of the River Nile

Measurements of the annual flow of the river Nile at Aswan (formerly Assuan), 1871--1970, in $10^8 m^3$, “with apparent changepoint near 1898” (Cobb(1978), Table 1, p.249).

Keywords
datasets
##### Usage
Nile
##### Format

A time series of length 100.

##### Source

Durbin, J. and Koopman, S. J. (2001) Time Series Analysis by State Space Methods. Oxford University Press. http://www.ssfpack.com/DKbook.html

##### References

Balke, N. S. (1993) Detecting level shifts in time series. Journal of Business and Economic Statistics 11, 81--92.

Cobb, G. W. (1978) The problem of the Nile: conditional solution to a change-point problem. Biometrika 65, 243--51.

• Nile
##### Examples
library(datasets) require(stats); require(graphics) par(mfrow = c(2, 2)) plot(Nile) acf(Nile) pacf(Nile) ar(Nile) # selects order 2 cpgram(ar(Nile)$resid) par(mfrow = c(1, 1)) arima(Nile, c(2, 0, 0)) ## Now consider missing values, following Durbin & Koopman NileNA <- Nile NileNA[c(21:40, 61:80)] <- NA arima(NileNA, c(2, 0, 0)) plot(NileNA) pred <- predict(arima(window(NileNA, 1871, 1890), c(2, 0, 0)), n.ahead = 20) lines(pred$pred, lty = 3, col = "red") lines(pred$pred + 2*pred$se, lty = 2, col = "blue") lines(pred$pred - 2*pred$se, lty = 2, col = "blue") pred <- predict(arima(window(NileNA, 1871, 1930), c(2, 0, 0)), n.ahead = 20) lines(pred$pred, lty = 3, col = "red") lines(pred$pred + 2*pred$se, lty = 2, col = "blue") lines(pred$pred - 2*pred$se, lty = 2, col = "blue") ## Structural time series models par(mfrow = c(3, 1)) plot(Nile) ## local level model (fit <- StructTS(Nile, type = "level")) lines(fitted(fit), lty = 2) # contemporaneous smoothing lines(tsSmooth(fit), lty = 2, col = 4) # fixed-interval smoothing plot(residuals(fit)); abline(h = 0, lty = 3) ## local trend model (fit2 <- StructTS(Nile, type = "trend")) ## constant trend fitted pred <- predict(fit, n.ahead = 30) ## with 50% confidence interval ts.plot(Nile, pred$pred, pred$pred + 0.67*pred$se, pred$pred -0.67*pred$se) ## Now consider missing values plot(NileNA) (fit3 <- StructTS(NileNA, type = "level")) lines(fitted(fit3), lty = 2) lines(tsSmooth(fit3), lty = 3) plot(residuals(fit3)); abline(h = 0, lty = 3) 
Documentation reproduced from package datasets, version 3.3.1, License: Part of R 3.3.1

### Community examples

Looks like there are no examples yet.