This function is similar to the SPSS MEAN.n
function and computes
row means from a data frame or matrix if at least min_valid
values of a row are
valid (and not NA
).
row_means(
data,
select = NULL,
exclude = NULL,
min_valid = NULL,
digits = NULL,
ignore_case = FALSE,
regex = FALSE,
remove_na = FALSE,
verbose = TRUE
)
A vector with row means for those rows with at least n
valid values.
A data frame with at least two columns, where row means are applied.
Variables that will be included when performing the required tasks. Can be either
a variable specified as a literal variable name (e.g., column_name
),
a string with the variable name (e.g., "column_name"
), or a character
vector of variable names (e.g., c("col1", "col2", "col3")
),
a formula with variable names (e.g., ~column_1 + column_2
),
a vector of positive integers, giving the positions counting from the left
(e.g. 1
or c(1, 3, 5)
),
a vector of negative integers, giving the positions counting from the
right (e.g., -1
or -1:-3
),
one of the following select-helpers: starts_with()
, ends_with()
,
contains()
, a range using :
or regex("")
. starts_with()
,
ends_with()
, and contains()
accept several patterns, e.g
starts_with("Sep", "Petal")
.
or a function testing for logical conditions, e.g. is.numeric()
(or
is.numeric
), or any user-defined function that selects the variables
for which the function returns TRUE
(like: foo <- function(x) mean(x) > 3
),
ranges specified via literal variable names, select-helpers (except
regex()
) and (user-defined) functions can be negated, i.e. return
non-matching elements, when prefixed with a -
, e.g. -ends_with("")
,
-is.numeric
or -(Sepal.Width:Petal.Length)
. Note: Negation means
that matches are excluded, and thus, the exclude
argument can be
used alternatively. For instance, select=-ends_with("Length")
(with
-
) is equivalent to exclude=ends_with("Length")
(no -
). In case
negation should not work as expected, use the exclude
argument instead.
If NULL
, selects all columns. Patterns that found no matches are silently
ignored, e.g. extract_column_names(iris, select = c("Species", "Test"))
will just return "Species"
.
See select
, however, column names matched by the pattern
from exclude
will be excluded instead of selected. If NULL
(the default),
excludes no columns.
Optional, a numeric value of length 1. May either be
a numeric value that indicates the amount of valid values per row to calculate the row mean;
or a value between 0
and 1
, indicating a proportion of valid values per
row to calculate the row mean (see 'Details').
NULL
(default), in which all cases are considered.
If a row's sum of valid values is less than min_valid
, NA
will be returned.
Numeric value indicating the number of decimal places to be
used for rounding mean values. Negative values are allowed (see 'Details').
By default, digits = NULL
and no rounding is used.
Logical, if TRUE
and when one of the select-helpers or
a regular expression is used in select
, ignores lower/upper case in the
search pattern when matching against variable names.
Logical, if TRUE
, the search pattern from select
will be
treated as regular expression. When regex = TRUE
, select must be a
character string (or a variable containing a character string) and is not
allowed to be one of the supported select-helpers or a character vector
of length > 1. regex = TRUE
is comparable to using one of the two
select-helpers, select = contains("")
or select = regex("")
, however,
since the select-helpers may not work when called from inside other
functions (see 'Details'), this argument may be used as workaround.
Logical, if TRUE
(default), removes missing (NA
) values
before calculating row means. Only applies if min_valuid
is not specified.
Toggle warnings.
Rounding to a negative number of digits
means rounding to a power of
ten, for example row_means(df, 3, digits = -2)
rounds to the nearest hundred.
For min_valid
, if not NULL
, min_valid
must be a numeric value from 0
to ncol(data)
. If a row in the data frame has at least min_valid
non-missing values, the row mean is returned. If min_valid
is a non-integer
value from 0 to 1, min_valid
is considered to indicate the proportion of
required non-missing values per row. E.g., if min_valid = 0.75
, a row must
have at least ncol(data) * min_valid
non-missing values for the row mean
to be calculated. See 'Examples'.
dat <- data.frame(
c1 = c(1, 2, NA, 4),
c2 = c(NA, 2, NA, 5),
c3 = c(NA, 4, NA, NA),
c4 = c(2, 3, 7, 8)
)
# default, all means are shown, if no NA values are present
row_means(dat)
# remove all NA before computing row means
row_means(dat, remove_na = TRUE)
# needs at least 4 non-missing values per row
row_means(dat, min_valid = 4) # 1 valid return value
# needs at least 3 non-missing values per row
row_means(dat, min_valid = 3) # 2 valid return values
# needs at least 2 non-missing values per row
row_means(dat, min_valid = 2)
# needs at least 1 non-missing value per row, for two selected variables
row_means(dat, select = c("c1", "c3"), min_valid = 1)
# needs at least 50% of non-missing values per row
row_means(dat, min_valid = 0.5) # 3 valid return values
# needs at least 75% of non-missing values per row
row_means(dat, min_valid = 0.75) # 2 valid return values
Run the code above in your browser using DataLab