# Simulate a Matern (Neyman Scott) point pattern
nclust <- function(x0, y0, radius, n) {
return(runifdisc(n, radius, centre=c(x0, y0)))
}
X <- rNeymanScott(20, 0.2, nclust, radius=0.3, n=10)
plot(X)
# Calculate K
r <- seq(0, 0.3, 0.01)
ActualValues.X <- K.r(X, r)
# Calculate confidence envelope (should be 1000 simulations, reduced to 50 to save time)
NumberOfSimulations <- 50
Alpha <- .10
LocalEnvelope.X <- KEnvelope(NumberOfSimulations, Alpha, X, r)
# Plot
PlotResults(r, DivideByPiR2(ActualValues.X, r), lapply(LocalEnvelope.X, DivideByPiR2, r),
ylab="K / (pi R^2)", ReferenceValue=1)
# GoF test. Power is correct if enough simulations are run (say >1000).
paste("p-value =", GoFtest(ActualValues.X, LocalEnvelope.X$Simulations, r))
Run the code above in your browser using DataLab