size = 3
data(motor)
dt_train <- motor[200:900]
dt_val <- motor[901:1000]
# With a DBN
obj <- c("pm_t_0")
net <- learn_dbn_struc(dt_train, size)
f_dt_train <- fold_dt(dt_train, size)
f_dt_val <- fold_dt(dt_val, size)
fit <- fit_dbn_params(net, f_dt_train, method = "mle-g")
res <- suppressWarnings(predict_dt(fit, f_dt_val, obj_nodes = obj, verbose = FALSE))
# With a Gaussian BN directly from bnlearn
obj <- c("pm")
net <- bnlearn::mmhc(dt_train)
fit <- bnlearn::bn.fit(net, dt_train, method = "mle-g")
res <- suppressWarnings(predict_dt(fit, dt_val, obj_nodes = obj, verbose = FALSE))
Run the code above in your browser using DataLab