dbplot
Leverages dplyr
to process the calculations of a plot inside a
database. This package provides helper functions that abstract the work
at three levels:
- Functions that ouput a
ggplot2
object - Functions that outputs a
data.frame
object with the calculations - Creates the formula needed to calculate bins for a Histogram or a Raster plot
Installation
# You can install the released version from CRAN
install.packages("dbplot")
# Or the the development version from GitHub:
install.packages("devtools")
devtools::install_github("edgararuiz/dbplot")
Connecting to a data source
For more information on how to connect to databases, including Hive, please visit http://db.rstudio.com
To use Spark, please visit the
sparklyr
official website: http://spark.rstudio.com
Example
In addition to database connections, the functions work with sparklyr
.
A Spark DataFrame will be used for the examples in this README.
library(sparklyr)
sc <- spark_connect(master = "local", version = "2.1.0")
spark_flights <- copy_to(sc, nycflights13::flights, "flights")
ggplot
Histogram
By default dbplot_histogram()
creates a 30 bin histogram
library(ggplot2)
spark_flights %>%
dbplot_histogram(sched_dep_time)
Use binwidth
to fix the bin size
spark_flights %>%
dbplot_histogram(sched_dep_time, binwidth = 200)
Because it outputs a ggplot2
object, more customization can be done
spark_flights %>%
dbplot_histogram(sched_dep_time, binwidth = 300) +
labs(title = "Flights - Scheduled Departure Time") +
theme_bw()
Raster
To visualize two continuous variables, we typically resort to a Scatter plot. However, this may not be practical when visualizing millions or billions of dots representing the intersections of the two variables. A Raster plot may be a better option, because it concentrates the intersections into squares that are easier to parse visually.
A Raster plot basically does the same as a Histogram. It takes two continuous variables and creates discrete 2-dimensional bins represented as squares in the plot. It then determines either the number of rows inside each square or processes some aggregation, like an average.
- If no
fill
argument is passed, the default calculation will be count,n()
spark_flights %>%
filter(!is.na(arr_delay)) %>%
dbplot_raster(arr_delay, dep_delay)
- Pass an aggregation formula that can run inside the database
spark_flights %>%
filter(!is.na(arr_delay)) %>%
dbplot_raster(arr_delay, dep_delay, mean(distance, na.rm = TRUE))
- Increase or decrease for more, or less, definition. The
resolution
argument controls that, it defaults to 100
spark_flights %>%
filter(!is.na(arr_delay)) %>%
dbplot_raster(arr_delay, dep_delay, mean(distance, na.rm = TRUE), resolution = 500)
Bar Plot
dbplot_bar()
defaults to a tally() of each value in a discrete variable
spark_flights %>%
dbplot_bar(origin)
- Pass a formula that will be operated for each value in the discrete variable
spark_flights %>%
dbplot_bar(origin, mean(dep_delay))
## Warning: Missing values are always removed in SQL.
## Use `AVG(x, na.rm = TRUE)` to silence this warning
Line plot
dbplot_line()
defaults to a tally() of each value in a discrete variable
spark_flights %>%
dbplot_line(month)
- Pass a formula that will be operated for each value in the discrete variable
spark_flights %>%
dbplot_line(month, mean(dep_delay))
## Warning: Missing values are always removed in SQL.
## Use `AVG(x, na.rm = TRUE)` to silence this warning
Boxplot
- It expects a discrete variable to group by, and a continuous variable to calculate the percentiles and IQR. It doesn’t calculate outliers. Currently, this feature works with sparklyr and Hive connections.
spark_flights %>%
dbplot_boxplot(origin, dep_delay)
Calculation functions
If a more customized plot is needed, the data the underpins the plots can also be accessed:
db_compute_bins()
- Returns a data frame with the bins and count per bindb_compute_count()
- Returns a data frame with the count per discrete valuedb_compute_raster()
- Returns a data frame with the results per x/y intersectiondb_compute_boxplot()
- Returns a data frame with boxplot calculations
spark_flights %>%
db_compute_bins(arr_delay)
## # A tibble: 28 x 2
## arr_delay count
## <dbl> <dbl>
## 1 4.53 79784.
## 2 -40.7 207999.
## 3 95.1 7890.
## 4 49.8 19063.
## 5 819. 8.
## 6 140. 3746.
## 7 321. 232.
## 8 231. 921.
## 9 -86.0 5325.
## 10 186. 1742.
## # ... with 18 more rows
The data can be piped to a plot
spark_flights %>%
filter(arr_delay < 100 , arr_delay > -50) %>%
db_compute_bins(arr_delay) %>%
ggplot() +
geom_col(aes(arr_delay, count, fill = count))
db_bin()
Uses ‘rlang’ to build the formula needed to create the bins of a numeric variable in an un-evaluated fashion. This way, the formula can be then passed inside a dplyr verb.
db_bin(var)
## (((max(var, na.rm = TRUE) - min(var, na.rm = TRUE))/30) * ifelse(as.integer(floor((var -
## min(var, na.rm = TRUE))/((max(var, na.rm = TRUE) - min(var,
## na.rm = TRUE))/30))) == 30, as.integer(floor((var - min(var,
## na.rm = TRUE))/((max(var, na.rm = TRUE) - min(var, na.rm = TRUE))/30))) -
## 1, as.integer(floor((var - min(var, na.rm = TRUE))/((max(var,
## na.rm = TRUE) - min(var, na.rm = TRUE))/30))))) + min(var,
## na.rm = TRUE)
spark_flights %>%
group_by(x = !! db_bin(arr_delay)) %>%
tally()
## # Source: lazy query [?? x 2]
## # Database: spark_connection
## x n
## <dbl> <dbl>
## 1 4.53 79784.
## 2 -40.7 207999.
## 3 95.1 7890.
## 4 49.8 19063.
## 5 819. 8.
## 6 140. 3746.
## 7 321. 232.
## 8 231. 921.
## 9 -86.0 5325.
## 10 186. 1742.
## # ... with more rows
spark_flights %>%
filter(!is.na(arr_delay)) %>%
group_by(x = !! db_bin(arr_delay)) %>%
tally()%>%
collect %>%
ggplot() +
geom_col(aes(x, n))