Learn R Programming

dbscan (version 1.1-3)

moons: Moons Data

Description

Contains 100 2-d points, half of which are contained in two moons or "blobs"" (25 points each blob), and the other half in asymmetric facing crescent shapes. The three shapes are all linearly separable.

Usage

data("moons")

Arguments

Format

A data frame with 100 observations on the following 2 variables.

X

a numeric vector

Y

a numeric vector

Details

This data was generated with the following Python commands using the SciKit-Learn library. dontrun import sklearn.datasets as data moons, _ = data.make_moons(n_samples=50, noise=0.05) blobs, _ = data.make_blobs(n_samples=50, centers=[(-0.75,2.25), (1.0, 2.0)], cluster_std=0.25) test_data = np.vstack([moons, blobs])

References

1. Pedregosa, Fabian, Gael Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel et al. "Scikit-learn: Machine learning in Python." Journal of Machine Learning Research 12, no. Oct (2011): 2825-2830.

Examples

Run this code
# NOT RUN {
data(moons)
plot(moons, pch=20)
# }

Run the code above in your browser using DataLab