Learn R Programming

dclone (version 2.1-1)

dc.fit: Iterative model fitting with data cloning

Description

jags.fit or bugs.fit is iteratively used to fit a model with increasing the number of clones.

Usage

dc.fit(data, params, model, inits, n.clones, 
    multiply = NULL, unchanged = NULL, 
    update = NULL, updatefun = NULL, initsfun = NULL,
    flavour = c("jags", "bugs"), n.chains = 3, ...)

Arguments

data
A named list (or environment) containing the data.
params
Character vector of parameters to be sampled. It can be a list of 2 vectors, 1st element is used as parameters to monitor, the 2nd is used as parameters to use in calculating the data cloning diagnostics.
model
Character string (name of the model file), a function containing the model, or a custommodel object (see Examples).
inits
Optional specification of initial values in the form of a list or a function (see Initialization at jags.model). If missing, will be treated as NULL and initial values will be gen
n.clones
An integer vector containing the numbers of clones to use iteratively.
multiply
Numeric or character index for list element(s) in the data argument to be multiplied by the number of clones instead of repetitions.
unchanged
Numeric or character index for list element(s) in the data argument to be left unchanged.
update
Numeric or character index for list element(s) in the data argument that has to be updated by updatefun in each iterations. This usually is for making priors more informative, and enhancing convergence. See Details and Exam
updatefun
A function to use for updating data[[update]]. It should take an 'mcmc.list' object as 1st argument, 2nd argument can be the number of clones. See Details and Examples.
initsfun
A function to use for generating initial values, inits are updated by the object returned by this function from the second iteration. If initial values are not dependent on the previous iteration, this should be NULL, other
flavour
If "jags", the function jags.fit is called. If "bugs", the function bugs.fit is called.
n.chains
Number of chains to generate.
...
Other values supplied to jags.fit, or bugs.fit, depending on the flavour argument.

Value

  • An object inheriting from the class 'mcmc.list'.

encoding

UTF-8

Details

The function fits a JAGS/BUGS model with increasing numbers of clones, as supplied by the argument n.clones. Data cloning is done by the function dclone using the arguments multiply and unchanged. An updating function can be provided, see Examples.

References

Lele, S.R., B. Dennis and F. Lutscher, 2007. Data cloning: easy maximum likelihood estimation for complex ecological models using Bayesian Markov chain Monte Carlo methods. Ecology Letters 10, 551--563. Lele, S. R., K. Nadeem and B. Schmuland, 2010. Estimability and likelihood inference for generalized linear mixed models using data cloning. Journal of the American Statistical Association 105, 1617--1625. Solymos, P., 2010. dclone: Data Cloning in R. The R Journal 2(2), 29--37. URL: http://journal.r-project.org/archive/2010-2/RJournal_2010-2_Solymos.pdf

See Also

Data cloning: dclone. Parallel computations: dc.parfit Model fitting: jags.fit, bugs.fit Convergence diagnostics: dctable, dcdiag

Examples

Run this code
## simulation for Poisson GLMM
set.seed(1234)
n <- 20
beta <- c(2, -1)
sigma <- 0.1
alpha <- rnorm(n, 0, sigma)
x <- runif(n)
X <- model.matrix(~x)
linpred <- crossprod(t(X), beta) + alpha
Y <- rpois(n, exp(linpred))
## JAGS model as a function
jfun1 <- function() {
    for (i in 1:n) {
        Y[i] ~ dpois(lambda[i])
        log(lambda[i]) <- alpha[i] + inprod(X[i,], beta)
        alpha[i] ~ dnorm(0, 1/sigma^2)
    }
    for (j in 1:np) {
        beta[j] ~ dnorm(0, 0.001)
    }
    sigma ~ dlnorm(0, 0.001)
}
## data
jdata <- list(n = n, Y = Y, X = X, np = NCOL(X))
## inits with latent variable and parameters
ini <- list(alpha=rep(0,n), beta=rep(0, NCOL(X)))
## function to update inits
ifun <- function(model, n.clones) {
    list(alpha=dclone(rep(0,n), n.clones),
        beta=coef(model)[-length(coef(model))])
}
## iteartive fitting
jmod <- dc.fit(jdata, c("beta", "sigma"), jfun1, ini,
    n.clones = 1:5, multiply = "n", unchanged = "np",
    initsfun=ifun)
## summary with DC SE and R hat
summary(jmod)
dct <- dctable(jmod)
plot(dct)
## How to use estimates to make priors more informative?
glmm.model.up <- function() {
    for (i in 1:n) {
        Y[i] ~ dpois(lambda[i])
        log(lambda[i]) <- alpha[i] + inprod(X[i,], beta[1,])
        alpha[i] ~ dnorm(0, 1/sigma^2)
    }
    for (j in 1:p) {
        beta[1,j] ~ dnorm(priors[j,1], priors[j,2])
    }
    sigma ~ dgamma(priors[(p+1),2], priors[(p+1),1])
}
## function for updating, x is an MCMC object
upfun <- function(x) {
    if (missing(x)) {
        p <- ncol(X)
        return(cbind(c(rep(0, p), 0.001), rep(0.001, p+1)))
    } else {
        par <- coef(x)
        return(cbind(par, rep(0.01, length(par))))
    }
}
updat <- list(n = n, Y = Y, X = X, p = ncol(X), priors = upfun())
dcmod <- dc.fit(updat, c("beta", "sigma"), glmm.model.up,
    n.clones = 1:5, multiply = "n", unchanged = "p",
    update = "priors", updatefun = upfun)
summary(dcmod)
## time series example
## data and model taken from Ponciano et al. 2009
## Ecology 90, 356-362.
paurelia <- c(17,29,39,63,185,258,267,392,510,
    570,650,560,575,650,550,480,520,500)
dat <- list(ncl=1, n=length(paurelia), Y=dcdim(data.matrix(paurelia)))
beverton.holt <- function() {
    for (k in 1:ncl) {
        for(i in 2:(n+1)){
            ## observations
            Y[(i-1), k] ~ dpois(exp(X[i, k]))
            ## state
            X[i, k] ~ dnorm(mu[i, k], 1 / sigma^2)
            mu[i, k] <- X[(i-1), k] + log(lambda) - log(1 + beta * exp(X[(i-1), k]))
        }
        ## state at t0
        X[1, k] ~ dnorm(mu0, 1 / sigma^2)
    }
    # Priors on model parameters
    beta ~ dlnorm(-1, 1)
    sigma ~ dlnorm(0, 1)
    tmp ~ dlnorm(0, 1)
    lambda <- tmp + 1
    mu0 <- log(2)  + log(lambda) - log(1 + beta * 2)
}
mod <- dc.fit(dat, c("lambda","beta","sigma"), beverton.holt,
    n.clones=c(1, 2, 5, 10), multiply="ncl", unchanged="n")
## compare with results from the paper:
##   beta   = 0.00235
##   lambda = 2.274
##   sigma  = 0.1274
summary(mod)

## Using WinBUGS/OpenBUGS
library(R2WinBUGS)
data(schools)
dat <- list(J = nrow(schools), y = schools$estimate, 
    sigma.y = schools$sd)
bugs.model <- function(){
       for (j in 1:J){
         y[j] ~ dnorm (theta[j], tau.y[j])
         theta[j] ~ dnorm (mu.theta, tau.theta)
         tau.y[j] <- pow(sigma.y[j], -2)
       }
       mu.theta ~ dnorm (0.0, 1.0E-6)
       tau.theta <- pow(sigma.theta, -2)
       sigma.theta ~ dunif (0, 1000)
     }  
inits <- function(){
    list(theta=rnorm(nrow(schools), 0, 100), mu.theta=rnorm(1, 0, 100),
         sigma.theta=runif(1, 0, 100))
}
param <- c("mu.theta", "sigma.theta")
if (.Platform$OS.type == "windows") {
sim2 <- dc.fit(dat, param, bugs.model, n.clones=1:2, 
    flavour="bugs", program="WinBUGS", multiply="J",
    n.iter=2000, n.thin=1)
summary(sim2)
}
sim3 <- dc.fit(dat, param, bugs.model, n.clones=1:2, 
    flavour="bugs", program="brugs", multiply="J",
    n.iter=2000, n.thin=1)
summary(sim3)
library(R2OpenBUGS)
sim4 <- dc.fit(dat, param, bugs.model, n.clones=1:2, 
    flavour="bugs", program="openbugs", multiply="J",
    n.iter=2000, n.thin=1)
summary(sim4)

Run the code above in your browser using DataLab