Creator functions for data types used in the dcmle package.
makeGsFit(data, model, params = NULL, inits = NULL, flavour)makeDcFit(data, model, params=NULL, inits = NULL,
multiply = NULL, unchanged = NULL, update = NULL,
updatefun = NULL, initsfun = NULL, flavour)
makeGsFit returns a 'gsFit' object (gsFit-class).
makeDcFit returns a 'dcFit' object (dcFit-class).
usually a named list with data.
BUGS model (function, character vector or
a custommodel object).
The argument is coerced into a custommodel object.
optional, character vector for model parameters to monitor.
initial values (NULL, list or function).
optional, argument passed to
dc.fit.
optional, argument passed to
dc.fit.
optional, argument passed to
dc.fit.
optional, argument passed to
dc.fit.
optional, argument passed to
dc.fit.
optional, argument passed to
dc.fit.
Peter Solymos
'gsFit' (after BU*GS*/JA*GS*) is a basic object class representing
requirements for the Bayesian MCMC model fitting.
The 'dcFit' object class extends 'gsFit'
by additional slots that are used to fine tune
how data cloning is done during fitting process.
Both 'gsFit' and 'dcFit' represent prerequisites
for model fitting, but do not containing any fitted
parts. Creator functions makeGsFit and makeDcFit
are available for these classes.
See dcmle-package help page for usage of creator functions.
The default flavour is stored in
getOption("dcmle.flavour") with value "jags".
It can be changed as options("dcmle.flavour"="bugs")
if required.
gsFit-class, dcFit-class, dcmle
showClass("gsFit")
new("gsFit")
showClass("dcFit")
new("dcFit")
Run the code above in your browser using DataLab