ScoreDCM estimates posterior probabilities of attribute profiles of respondents using a Diagnostic Classification Model (DCM)
and Markov Chain Monte Carlo (MCMC) method. The estimation procedure uses the loglinear cognitive diagnostic modeling (LDCM)
framework that allows for the estimation of a host of DCMs such as DCM, DINA, C-RUM, NIDO, NIDA, NC-RUM etc.
ScoreDCM(observations, qmatrix, parameter.means, parameter.acov= NULL,
parameterization.method = "Mplus", is.kernel.parameters = FALSE, model.type = NULL,
nreps = 1000 , nchains = 1, initial.class = 1, percent.reps.to.discard = 5)nobservations X nitems)nitems X nattributesGetParameterNames if parametrization method is Mplus and non-kernel parameters are used. If kernel parameters values
are used must be in order of GetKernelParameterNamesNULL (the default) model parameters are not randomized
for each iteration of MCMCMplusFALSE (the default), parameter values are of type taus and nus else they are of type
kernel parameters, i.e., lambdas and gammasis.kernel.parameter is TRUE, model type must be one of DCM, DINA, CRUM, DINO,
NIDO, NCRUM. Kernel parameters are different for each model typedcm.scorer.class; a list consisting of
all.results.class class; a list consisting of
attribute.profile.classattribute.classparameter.classsummary is used to obtain and print a summary of
MCMC runs in the form of probabilities of mastering each attribute and attribute profile probabilities.
The function plot is used to plot the aggregated mean of both attribute mastery (type = "attr.means")
and attribute profile probabily (type = "attr.profile.means") across all respondents. Other plot options include
attribute mastery (type = "attr.profiles") and attribute profile probabilities (type = "attr.profile.profiles")
of individual respondents.
## Not run:
#
# data(obervations.test)
# data(qmatrix.test)
# parameter.names <- GetParameterNames(qmatrix.test, ncol(qmatrix.test))
# parameter.names
# data(parameter.means.DCM.Mplus.test)
# obj <- ScoreDCM(observations = observations.test, qmatrix = qmatrix.test
# , parameter.means = parameter.means.DCM.Mplus.test)
# summary(obj)
# plot(obj)
# ## End(Not run)
Run the code above in your browser using DataLab