darray to
partition and share data across multiple R instances. Users can
express parallel execution using dmapply.useBackend- choose execution enginedarray- create distributed arraydframe- create distributed data framedlist- create distributed listas.darray- create darray object from matrix objectis.darray- check if object is distributed arrayparts- obtain partitions of an objectnparts- number of partitions as vectortotalParts- obtain total number of partitionspsize- obtain dimensions of partitionscollect- fetch darray, dframe or dlist object at the masterrepartition- repartition input objectlibrary(dds)
useBackend(parallel)
a <- dmapply(function(x,y) x+y, 1:5, 2:6, nparts=3)
collect(a)Run the code above in your browser using DataLab