darray
to
partition and share data across multiple R instances. Users can
express parallel execution using dmapply
.useBackend
- choose execution enginedarray
- create distributed arraydframe
- create distributed data framedlist
- create distributed listas.darray
- create darray object from matrix objectis.darray
- check if object is distributed arrayparts
- obtain partitions of an objectnparts
- number of partitions as vectortotalParts
- obtain total number of partitionspsize
- obtain dimensions of partitionscollect
- fetch darray, dframe or dlist object at the masterrepartition
- repartition input objectlibrary(dds)
useBackend(parallel)
a <- dmapply(function(x,y) x+y, 1:5, 2:6, nparts=3)
collect(a)
Run the code above in your browser using DataLab