Learn R Programming

ddgraph (version 1.16.0)

independent.contributions.formula: Generate class labels by independent contributions of two variables

Description

Generate class labels by using the readout mechanism. Logical formula is applied to two variables which are read out from the real data using the var1 and var2 probabilities. This only works with binary variables.

Usage

independent.contributions.formula(data, var1, var2, var1.prob1, var1.prob0, var2.prob1, var2.prob0, logical.formula, false.neg=0, false.pos=0)

Arguments

data
a matrix or data.frame containing binary observations (columns are variables)
var1
index or name of the first variable
var2
index or name of the second variable
var1.prob1
the conditional probability P(class labels = 1|var1=1)
var1.prob0
the conditional probability P(class labels = 1|var1=0)
var2.prob1
the conditional probability P(class labels = 1|var2=1)
var2.prob0
the conditional probability P(class labels = 1|var2=0)
logical.formula
logical formula to apply
false.neg
a false negative probability
false.pos
a false positive probability

Value

Examples

Run this code
data <- cbind("a"=c(0,0,1,1), "b"=c(0,1,0,1))
independent.contributions.formula(data, "a", "b", 0.9, 0.1, 0.9, 0.1, "a | b")

Run the code above in your browser using DataLab