Usage
svmFeatureSelectionLOOCV(obj, selectionMode="direct", alpha=0.1, p.value.adjust.method="none", test.type="mc-x2", mc.replicates=5000, cost.range=logseq(0.01, 1e+05, 8), gamma.range=logseq(1e-05, 100, 8), max.prop.SV=0.9, kernel="radial", skip.DDGraph=FALSE)
Arguments
selectionMode
which variables to take, possible values:
"direct" (alias "p"), "direct and joint" (alias "ps"), "joint if no direct" (alias "snp")
alpha
the alpha cutoff to use
p.value.adjust.method
the p value adjustment for multiple testing to be applied
test.type
the type of conditional independence test to be used
mc.replicates
the number of Monte-Carlo replicates when determining p values
cost.range
the range of cost parameter values to evaluate
gamma.range
the range of gamma parameter values to evaluate
max.prop.SV
the maximal proportion of support vectors to number of data points (rows in d)
kernel
kernel type to use (takes valid package e1071 names like "radial")
skip.DDGraph
if to skip DDGraph-based variable selection