Learn R Programming

ddgraph (version 1.16.0)

svmFeatureSelectionLOOCV: Nested variable selection using LOOCV

Description

Nested variable selection using LOOCV

Usage

svmFeatureSelectionLOOCV(obj, selectionMode="direct", alpha=0.1, p.value.adjust.method="none", test.type="mc-x2", mc.replicates=5000, cost.range=logseq(0.01, 1e+05, 8), gamma.range=logseq(1e-05, 100, 8), max.prop.SV=0.9, kernel="radial", skip.DDGraph=FALSE)

Arguments

obj
the DDDataSet object
selectionMode
which variables to take, possible values: "direct" (alias "p"), "direct and joint" (alias "ps"), "joint if no direct" (alias "snp")
alpha
the alpha cutoff to use
p.value.adjust.method
the p value adjustment for multiple testing to be applied
test.type
the type of conditional independence test to be used
mc.replicates
the number of Monte-Carlo replicates when determining p values
cost.range
the range of cost parameter values to evaluate
gamma.range
the range of gamma parameter values to evaluate
max.prop.SV
the maximal proportion of support vectors to number of data points (rows in d)
kernel
kernel type to use (takes valid package e1071 names like "radial")
skip.DDGraph
if to skip DDGraph-based variable selection

Value

Details

A function to select variables in nested way using the following algorithm:
  1. repeat for each row in dataset:
    1. make new DDDataSet by removing one row and apply DDGraphs to select features
    2. select best parameters using recalculateSVMparams (i.e. in an inner LOOCV loop)
    3. make the classifier with best parameters and calculate output on the unseen row (removed in step 1)

  2. return the collected predictions from step 1.3