- K
number of classes (integer)
- data
an NxJ matrix of multivariate binary responses, where
N is the number of individuals, and J is the number of granular items
- item_membership_list
a list of G elements, where the g-th element contains the column
indices of data corresponding to items in major group g
- c
hyparameter of divergence function a(t)
- c_order
equals 1 (default) or 2 to choose divergence function
a(t) = c/(1-t) or c/(1-t)^2.
- method_lcm
a character. If random (default), the initial LCM parameters will be random values.
If poLCA, the initial LCM parameters will be EM algorithm estimates from the poLCA function.
- method_dist
string specifying the distance measure to be used in dist().
This must be one of "euclidean" (defaults), "maximum", "manhattan", "canberra", "binary" or "minkowski".
Any unambiguous substring can be given.
- method_hclust
string specifying the distance measure to be used in hclust().
This should be (an unambiguous abbreviation of) one of "ward.D" (defaults), "ward.D2", "single",
"complete", "average" (= UPGMA), "mcquitty" (= WPGMA), "median" (= WPGMC) or
"centroid" (= UPGMC).
- method_add_root
string specifying the method to add the initial branch to the tree
output from hclust(). This should be one of "min_cor" (the absolute value of the minimum
between-class correlation; default) or "sample_ddt" (randomly sample a small divergence time from
the DDT process with c = 100)
- fixed_initials
a named list of fixed initial values, including
the initial values for tree ("phylo4d"), response_prob, class_probability, class_assignments,
Sigma_by_group, and c. Default is NULL. See
- fixed_priors
a named list of fixed prior hyperparameters, including the
the Gamma prior for c, inverse-Gamma prior for sigma_g^2, and Dirichlet prior
for pi. Moreover, we allow for a type III generalized logistic distribution such
that f(eta; a_pg) = theta. This becomes a standard logistic distribution when a_pg = 1. See
Dalla Valle, L., Leisen, F., Rossini, L., & Zhu, W. (2021). A Pólya–Gamma sampler for a
generalized logistic regression. Journal of Statistical Computation and Simulation, 91(14), 2899-2916.
An example input list is
list("shape_c" = 1, "rate_c" = 1, "shape_sigma" = rep(2, G), "rate_sigma" = rep(2, G), "a_pg" = 1.0), where
G is the number of major item groups. Default is NULL.
- alpha, theta
hyparameter of branching probability a(t) Gamma(m-alpha) / Gamma(m+1+theta)
For DDT, alpha = theta = 0
- ...
optional arguments for the poLCA function