Estimate an initial binary tree on latent classes using hclust()
initialize_hclust(
leaf_data,
c,
c_order = 1,
method_dist = "euclidean",
method_hclust = "ward.D",
method_add_root = "min_cor",
alpha = 0,
theta = 0,
...
)phylo4d object of tree topology
a K by J matrix of \(logit(theta_{kj})\)
hyparameter of divergence function a(t)
equals 1 (default) or 2 to choose divergence function
string specifying the distance measure to be used in dist(). This must be one of "euclidean", "maximum", "manhattan", "canberra", "binary" or "minkowski". Any unambiguous substring can be given.
string specifying the distance measure to be used in hclust(). This should be (an unambiguous abbreviation of) one of "ward.D", "ward.D2", "single", "complete", "average" (= UPGMA), "mcquitty" (= WPGMA), "median" (= WPGMC) or "centroid" (= UPGMC).
string specifying the method to add the initial branch to the tree output from hclust(). This should be one of "min_cor" (the absolute value of the minimum between-class correlation) or "sample_ddt" (randomly sample a small divergence time from the DDT process with a large c = 100)
hyparameter of branching probability a(t) Gamma(m-alpha) / Gamma(m+1+theta) For DDT, alpha = theta = 0
optional arguments for the poLCA function
Other initialization functions:
initialize(),
initialize_poLCA()