## =============================================================================
## 1. EVENTS in a data.frame
## =============================================================================
## derivative function: derivatives set to 0
derivs <- function(t, var, parms) {
list(dvar = rep(0, 2))
}
yini <- c(v1 = 1, v2 = 2)
times <- seq(0, 10, by = 0.1)
eventdat <- data.frame(var = c("v1", "v2", "v2", "v1"),
time = c(1, 1, 5, 9) ,
value = c(1, 2, 3, 4),
method = c("add", "mult", "rep", "add"))
eventdat
out <- vode(func = derivs, y = yini, times = times, parms = NULL,
events = list(data = eventdat))
plot(out)
##
eventdat <- data.frame(var = c(rep("v1", 10), rep("v2", 10)),
time = c(1:10, 1:10),
value = runif(20),
method = rep("add", 20))
eventdat
out <- ode(func = derivs, y = yini, times = times, parms = NULL,
events = list(data = eventdat))
plot(out)
## =============================================================================
## 2. EVENTS in a function
## =============================================================================
## derivative function: rate of change v1 = 0, v2 reduced at first-order rate
derivs <- function(t, var, parms) {
list(c(0, -0.5 * var[2]))
}
# events: add 1 to v1, multiply v2 with random number
eventfun <- function(t, y, parms){
with (as.list(y),{
v1 <- v1 + 1
v2 <- 5 * runif(1)
return(c(v1, v2))
})
}
yini <- c(v1 = 1, v2 = 2)
times <- seq(0, 10, by = 0.1)
out <- ode(func = derivs, y = yini, times = times, parms = NULL,
events = list(func = eventfun, time = 1:9) )
plot(out, type = "l")
## =============================================================================
## 3. EVENTS triggered by a root function
## =============================================================================
## derivative: simple first-order decay
derivs <- function(t, y, pars) {
return(list(-0.1 * y))
}
## event triggered if state variable = 0.5
rootfun <- function (t, y, pars) {
return(y - 0.5)
}
## sets state variable = 1
eventfun <- function(t, y, pars) {
return(y = 1)
}
yini <- 2
times <- seq(0, 100, 0.1)
## uses ode to solve; root = TRUE specifies that the event is
## triggered by a root.
out <- ode(times = times, y = yini, func = derivs, parms = NULL,
events = list(func = eventfun, root = TRUE),
rootfun = rootfun)
plot(out, type = "l")
## time of the root:
troot <- attributes(out)$troot
points(troot, rep(0.5, length(troot)))Run the code above in your browser using DataLab