Learn R Programming

deSolve (version 1.10-9)

zvode: Solver for Ordinary Differential Equations (ODE) for COMPLEX variables

Description

Solves the initial value problem for stiff or nonstiff systems of ordinary differential equations (ODE) in the form:

$$dy/dt = f(t,y)$$ where $dy$ and $y$ are complex variables. The Rfunction zvode provides an interface to the FORTRAN ODE solver of the same name, written by Peter N. Brown, Alan C. Hindmarsh and George D. Byrne.

Usage

zvode(y, times, func, parms, rtol = 1e-6, atol = 1e-6,  
  jacfunc = NULL, jactype = "fullint", mf = NULL, verbose = FALSE,   
  tcrit = NULL, hmin = 0, hmax = NULL, hini = 0, ynames = TRUE,
  maxord = NULL, bandup = NULL, banddown = NULL, maxsteps = 5000,
  dllname = NULL, initfunc = dllname, initpar = parms, rpar = NULL,
  ipar = NULL, nout = 0, outnames = NULL, forcings = NULL,
  initforc = NULL, fcontrol = NULL, ...)

Arguments

y
the initial (state) values for the ODE system. If y has a name attribute, the names will be used to label the output matrix. y has to be complex
times
time sequence for which output is wanted; the first value of times must be the initial time; if only one step is to be taken; set times = NULL.
func
either an R-function that computes the values of the derivatives in the ODE system (the model definition) at time t, or a character string giving the name of a compiled function in a dynamically loaded shared library.
parms
vector or list of parameters used in func or jacfunc.
rtol
relative error tolerance, either a scalar or an array as long as y. See details.
atol
absolute error tolerance, either a scalar or an array as long as y. See details.
jacfunc
if not NULL, an Rfunction that computes the Jacobian of the system of differential equations $\partial\dot{y}_i/\partial y_j$, or a string giving the name of a function or subroutine in dllname that computes the J
jactype
the structure of the Jacobian, one of "fullint", "fullusr", "bandusr" or "bandint" - either full or banded and estimated internally or by user; overruled if mf is not NULL<
mf
the "method flag" passed to function zvode - overrules jactype - provides more options than jactype - see details.
verbose
if TRUE: full output to the screen, e.g. will print the diagnostiscs of the integration - see details.
tcrit
if not NULL, then zvode cannot integrate past tcrit. The FORTRAN routine dvode overshoots its targets (times points in the vector times), and interpolates values for the desired
hmin
an optional minimum value of the integration stepsize. In special situations this parameter may speed up computations with the cost of precision. Don't use hmin if you don't know why!
hmax
an optional maximum value of the integration stepsize. If not specified, hmax is set to the largest difference in times, to avoid that the simulation possibly ignores short-term events. If 0, no maximal size is specified.
hini
initial step size to be attempted; if 0, the initial step size is determined by the solver.
ynames
logical; if FALSE: names of state variables are not passed to function func ; this may speed up the simulation especially for multi-D models.
maxord
the maximum order to be allowed. NULL uses the default, i.e. order 12 if implicit Adams method (meth = 1), order 5 if BDF method (meth = 2). Reduce maxord to save storage space.
bandup
number of non-zero bands above the diagonal, in case the Jacobian is banded.
banddown
number of non-zero bands below the diagonal, in case the Jacobian is banded.
maxsteps
maximal number of steps per output interval taken by the solver.
dllname
a string giving the name of the shared library (without extension) that contains all the compiled function or subroutine definitions refered to in func and jacfunc. See package vignette "compiledCode".
initfunc
if not NULL, the name of the initialisation function (which initialises values of parameters), as provided in dllname. See package vignette "compiledCode".
initpar
only when dllname is specified and an initialisation function initfunc is in the dll: the parameters passed to the initialiser, to initialise the common blocks (FORTRAN) or global variables (C, C++).
rpar
only when dllname is specified: a vector with double precision values passed to the DLL-functions whose names are specified by func and jacfunc.
ipar
only when dllname is specified: a vector with integer values passed to the dll-functions whose names are specified by func and jacfunc.
nout
only used if dllname is specified and the model is defined in compiled code: the number of output variables calculated in the compiled function func, present in the shared library. Note: it is not automatically checke
outnames
only used if dllname is specified and nout > 0: the names of output variables calculated in the compiled function func, present in the shared library. These names will be used to label the output matrix.
forcings
only used if dllname is specified: a list with the forcing function data sets, each present as a two-columned matrix, with (time,value); interpolation outside the interval [min(times), max(times)] is done
initforc
if not NULL, the name of the forcing function initialisation function, as provided in dllname. It MUST be present if forcings has been given a value. See forcings
fcontrol
A list of control parameters for the forcing functions. forcings or package vignette "compiledCode"
...
additional arguments passed to func and jacfunc allowing this to be a generic function.

Value

  • A matrix of class deSolve with up to as many rows as elements in times and as many columns as elements in y plus the number of "global" values returned in the next elements of the return from func, plus and additional column for the time value. There will be a row for each element in times unless the FORTRAN routine `zvode' returns with an unrecoverable error. If y has a names attribute, it will be used to label the columns of the output value.

Details

see vode, the double precision version, for details.

References

P. N. Brown, G. D. Byrne, and A. C. Hindmarsh, 1989. VODE: A Variable Coefficient ODE Solver, SIAM J. Sci. Stat. Comput., 10, pp. 1038-1051. Also, LLNL Report UCRL-98412, June 1988.

G. D. Byrne and A. C. Hindmarsh, 1975. A Polyalgorithm for the Numerical Solution of Ordinary Differential Equations. ACM Trans. Math. Software, 1, pp. 71-96.

A. C. Hindmarsh and G. D. Byrne, 1977. EPISODE: An Effective Package for the Integration of Systems of Ordinary Differential Equations. LLNL Report UCID-30112, Rev. 1.

G. D. Byrne and A. C. Hindmarsh, 1976. EPISODEB: An Experimental Package for the Integration of Systems of Ordinary Differential Equations with Banded Jacobians. LLNL Report UCID-30132, April 1976.

A. C. Hindmarsh, 1983. ODEPACK, a Systematized Collection of ODE Solvers. in Scientific Computing, R. S. Stepleman et al., eds., North-Holland, Amsterdam, pp. 55-64. K. R. Jackson and R. Sacks-Davis, 1980. An Alternative Implementation of Variable Step-Size Multistep Formulas for Stiff ODEs. ACM Trans. Math. Software, 6, pp. 295-318. Netlib: http://www.netlib.org

See Also

vode for the double precision version

Examples

Run this code
## =======================================================================
## Example 1 - very simple example 
## df/dt = 1i*f, where 1i is the imaginary unit
## The initial value is f(0) = 1 = 1+0i
## =======================================================================

ZODE <- function(Time, f, Pars) {
  df <-  1i*f
  return(list(df))
}

pars    <- NULL
yini    <- c(f = 1+0i)
times   <- seq(0, 2*pi, length = 100)
out     <- zvode(func = ZODE, y = yini, parms = pars, times = times,
  atol = 1e-10, rtol = 1e-10)

# The analytical solution to this ODE is the exp-function:
# f(t) = exp(1i*t)
#      = cos(t)+1i*sin(t)  (due to Euler's equation)

analytical.solution  <- exp(1i * times) 

## compare numerical and analytical solution
tail(cbind(out[,2], analytical.solution))


## =======================================================================
## Example 2 - example in "zvode.f",  
## df/dt = 1i*f        (same as above ODE)
## dg/dt = -1i*g*g*f   (an additional ODE depending on f)
##
## Initial values are
## g(0) = 1/2.1 and
## z(0) = 1  
## =======================================================================

ZODE2<-function(Time,State,Pars) {
  with(as.list(State), {
    df <- 1i * f
    dg <- -1i * g*g * f
    return(list(c(df, dg)))
  })
}

yini    <- c(f = 1 + 0i, g = 1/2.1 + 0i)
times   <- seq(0, 2*pi, length = 100)
out     <- zvode(func = ZODE2, y = yini, parms = NULL, times = times,
  atol = 1e-10, rtol = 1e-10)


## The analytical solution is
## f(t) = exp(1i*t)   (same as above)
## g(t) = 1/(f(t) + 1.1)

analytical <- cbind(f = exp(1i * times), g = 1/(exp(1i * times) + 1.1))

## compare numerical solution and the two analytical ones:
tail(cbind(out[,2], analytical[,1]))

Run the code above in your browser using DataLab