## =======================================================================
## A Lotka-Volterra predator-prey model with predator and prey
## dispersing in 2 dimensions
## =======================================================================
## ==================
## Model definitions
## ==================
lvmod2D <- function (time, state, pars, N, Da, dx)
{
NN <- N*N
Prey <- matrix(nr = N,nc = N,state[1:NN])
Pred <- matrix(nr = N,nc = N,state[(NN+1):(2*NN)])
with (as.list(pars),
{
## Biology
dPrey <- rGrow* Prey *(1- Prey/K) - rIng* Prey *Pred
dPred <- rIng* Prey *Pred*assEff -rMort* Pred
zero <- rep(0,N)
## 1. Fluxes in x-direction; zero fluxes near boundaries
FluxPrey <- -Da * rbind(zero,(Prey[2:N,]-Prey[1:(N-1),]), zero)/dx
FluxPred <- -Da * rbind(zero,(Pred[2:N,]-Pred[1:(N-1),]), zero)/dx
## Add flux gradient to rate of change
dPrey <- dPrey - (FluxPrey[2:(N+1),]-FluxPrey[1:N,])/dx
dPred <- dPred - (FluxPred[2:(N+1),]-FluxPred[1:N,])/dx
## 2. Fluxes in y-direction; zero fluxes near boundaries
FluxPrey <- -Da * cbind(zero,(Prey[,2:N]-Prey[,1:(N-1)]), zero)/dx
FluxPred <- -Da * cbind(zero,(Pred[,2:N]-Pred[,1:(N-1)]), zero)/dx
## Add flux gradient to rate of change
dPrey <- dPrey - (FluxPrey[,2:(N+1)]-FluxPrey[,1:N])/dx
dPred <- dPred - (FluxPred[,2:(N+1)]-FluxPred[,1:N])/dx
return (list(c(as.vector(dPrey), as.vector(dPred))))
})
}
## ===================
## Model applications
## ===================
pars <- c(rIng = 0.2, # /day, rate of ingestion
rGrow = 1.0, # /day, growth rate of prey
rMort = 0.2 , # /day, mortality rate of predator
assEff = 0.5, # -, assimilation efficiency
K = 5 ) # mmol/m3, carrying capacity
R <- 20 # total length of surface, m
N <- 50 # number of boxes in one direction
dx <- R/N # thickness of each layer
Da <- 0.05 # m2/d, dispersion coefficient
NN <- N*N # total number of boxes
## initial conditions
yini <- rep(0, 2*N*N)
cc <- c((NN/2):(NN/2+1)+N/2, (NN/2):(NN/2+1)-N/2)
yini[cc] <- yini[NN+cc] <- 1
## solve model (5000 state variables...
times <- seq(0, 50, by = 1)
out <- ode.2D(y = yini, times = times, func = lvmod2D, parms = pars,
dimens = c(N, N), N = N, dx = dx, Da = Da, lrw = 5000000)
## plot results
Col <- colorRampPalette(c("#00007F", "blue", "#007FFF", "cyan",
"#7FFF7F", "yellow", "#FF7F00", "red", "#7F0000"))
for (i in seq(1, length(times), by = 1))
image(matrix(nr = N, nc = N, out[i, 2:(NN+1)]),
col = Col(100), xlab = "x", ylab = "y", zlim = range(out[,2:(NN+1)]))
## =======================================================================
## An example with a cyclic boundary condition.
## Diffusion in 2-D; extra flux on 2 boundaries,
## cyclic boundary in y
## =======================================================================
diffusion2D <- function(t,Y,par)
{
y <- matrix(nr=nx,nc=ny,data=Y) # vector to 2-D matrix
dY <- -r*y # consumption
BNDx <- rep(1,nx) # boundary concentration
BNDy <- rep(1,ny) # boundary concentration
#diffusion in X-direction; boundaries=imposed concentration
Flux <- -Dx * rbind(y[1,]-BNDy,(y[2:nx,]-y[1:(nx-1),]),BNDy-y[nx,])/dx
dY <- dY - (Flux[2:(nx+1),]-Flux[1:nx,])/dx
#diffusion in Y-direction
Flux <- -Dy * cbind(y[,1]-BNDx,(y[,2:ny]-y[,1:(ny-1)]),BNDx-y[,ny])/dy
dY <- dY - (Flux[,2:(ny+1)]-Flux[,1:ny])/dy
# extra flux on two sides
dY[,1] <- dY[,1]+ 10
dY[1,] <- dY[1,]+ 10
# and exchange between sides on y-direction
dY[,ny] <- dY[,ny]+ (y[,1]-y[,ny])*10
return(list(as.vector(dY)))
}
# parameters
dy <- dx <- 1 # grid size
Dy <- Dx <- 1 # diffusion coeff, X- and Y-direction
r <- 0.05 # consumption rate
nx <- 50
ny <- 100
y <- matrix(nr=nx,nc=ny,1.)
print(system.time(
ST3 <- ode.2D(y, times=1:100, func=diffusion2D, parms=NULL,
dimens=c(nx,ny), verbose=TRUE,
lrw=400000, atol=1e-10, rtol=1e-10, cyclicBnd=2)
))
zlim <- range(ST3[,-1])
for (i in 2:nrow(ST3)) {
y <- matrix(nr=nx,nc=ny,data=ST3[i,-1])
filled.contour(y,zlim=zlim,main=i)
}
Run the code above in your browser using DataLab