Non-radial DEA model allows for non-proportional reductions in each input or augmentations in each output.
model_nonradial(datadea,
dmu_eval = NULL,
dmu_ref = NULL,
orientation = c("io", "oo"),
rts = c("crs", "vrs", "nirs", "ndrs", "grs"),
L = 1,
U = 1,
maxslack = TRUE,
weight_slack = 1,
compute_target = TRUE,
returnlp = FALSE,
...)
The data, including n
DMUs, m
inputs and s
outputs.
A numeric vector containing which DMUs have to be evaluated.
If NULL
(default), all DMUs are considered.
A numeric vector containing which DMUs are the evaluation reference set.
If NULL
(default), all DMUs are considered.
A string, equal to "io" (input-oriented) or "oo" (output-oriented).
A string, determining the type of returns to scale, equal to "crs" (constant), "vrs" (variable), "nirs" (non-increasing), "ndrs" (non-decreasing) or "grs" (generalized).
Lower bound for the generalized returns to scale (grs).
Upper bound for the generalized returns to scale (grs).
Logical. If it is TRUE
, it computes the max slack solution.
If input-oriented, it is a value, vector of length s
, or matrix s
x ne
(where ne
is the length of dmu_eval
) with the weights of the output slacks for the max slack solution.
If output-oriented, it is a value, vector of length m
, or matrix m
x ne
with the weights of the input slacks for the max slack solution.
Logical. If it is TRUE
, it computes targets of the max slack solution.
Logical. If it is TRUE
, it returns the linear problems (objective function and constraints) of stage 1.
Ignored, for compatibility issues.
Vicente Coll-Serrano (vicente.coll@uv.es). Quantitative Methods for Measuring Culture (MC2). Applied Economics.
Vicente Bolós (vicente.bolos@uv.es). Department of Business Mathematics
Rafael Benítez (rafael.suarez@uv.es). Department of Business Mathematics
University of Valencia (Spain)
Banker, R.D.; Morey, R.C. (1986). "Efficiency Analysis for Exogenously Fixed Inputs and Outputs", Operations Research, 34, 80-97. tools:::Rd_expr_doi("10.1287/opre.34.4.513")
Färe, R.; Lovell, C.K. (1978). "Measuring the Technical Efficiency of Production", Journal of Economic Theory, 19(1), 150-162. tools:::Rd_expr_doi("10.1016/0022-0531(78)90060-1")
Wh, J.; Tsai, H.; Zhou, Z. (2011). "Improving Efficiency in International Tourist Hotels in Taipei Using a Non-Radial DEA Model", International Journal of Contemporary Hospitatlity Management, 23(1), 66-83. tools:::Rd_expr_doi("10.1108/09596111111101670")
Zhu, J. (1996). “Data Envelopment Analysis with Preference Structure”, The Journal of the Operational Research Society, 47(1), 136. tools:::Rd_expr_doi("10.2307/2584258")
model_deaps
, model_profit
, model_sbmeff
# Replication of results in Wu, Tsai and Zhou (2011)
data("Hotels")
data_hotels <- read_data(Hotels,
inputs = 2:5,
outputs = 6:8)
result <- model_nonradial(data_hotels,
orientation = "oo",
rts = "vrs")
efficiencies(result)
Run the code above in your browser using DataLab