Last chance! 50% off unlimited learning
Sale ends in
autosearch(initnw,data,prior=jointprior(network(data)),maxiter=50,
trylist= rep(list(NULL),initnw$n),trace=TRUE,
timetrace=TRUE,showban=FALSE,saveall=FALSE)
heuristic(initnw,data,prior=jointprior(network(data)),
maxiter=100,restart=10,degree=initnw$n,
trylist= rep(list(NULL),initnw$n),trace=TRUE,
timetrace=TRUE,saveall=FALSE)
modelstreng(x)
makenw(tb,template)
network
.jointprior
.perturb
.maketrylist
.plot.network
.FALSE
. The table can be translated to a networkfamily using makenw.learn
.autosearch
, each step, a list of networks is
created with either one
arrow added, one arrow deleted or one arrow turned (if a cycle is not
generated). The network scores of all the proposal networks are
calculated and the network with the highest score is chosen for the
next step in the search. If no proposed networks has a higher network
score than the previous network, the search is terminated. The
returned network list contains all tried networks (depending on the
value of saveall).
heuristics
restarts by perturbing initnw
degree
times and calling
autosearch
again. The number
of restarts is given by the option restart
.perturb
data(rats)
fit <- network(rats)
fit.prior <- jointprior(fit,12)
fit <- learn(fit,rats,fit.prior)$nw
fit <- insert(fit,2,1,rats,fit.prior)$nw
fit <- insert(fit,1,3,rats,fit.prior)$nw
hisc <- autosearch(fit,rats,fit.prior)$nw
Run the code above in your browser using DataLab