library(Rfast)
n <- 800 # number of samples
p <- 200 # number of features
# create correlation matrix
Sigma <- autocorr.mat(p, .9)
# draw data from correlation matrix Sigma
Y <- rmvnorm(n, rep(0, p), sigma = Sigma * 5.1, seed = 1)
rownames(Y) <- paste0("sample_", seq(n))
colnames(Y) <- paste0("gene_", seq(p))
# eclairs decomposition
ecl <- eclairs(Y)
# extract covariance implied by eclairs decomposition
getCov(ecl)[1:3, 1:3]
Run the code above in your browser using DataLab