Learn R Programming

deepnet (version 0.2)

rbm.train: Training a RBM(restricted Boltzmann Machine)

Description

Training a RBM(restricted Boltzmann Machine)

Usage

rbm.train(x, hidden, numepochs = 3, batchsize = 100, learningrate = 0.8, learningrate_scale = 1, momentum = 0.5, visible_type = "bin", hidden_type = "bin", cd = 1)

Arguments

x
matrix of x values for examples
hidden
number of hidden units
visible_type
activation function of input unit.Only support "sigm" now
hidden_type
activation function of hidden unit.Only support "sigm" now
learningrate
learning rate for gradient descent. Default is 0.8.
momentum
momentum for gradient descent. Default is 0.5 .
learningrate_scale
learning rate will be mutiplied by this scale after every iteration. Default is 1 .
numepochs
number of iteration for samples Default is 3.
batchsize
size of mini-batch. Default is 100.
cd
number of iteration for Gibbs sample of CD algorithm.

Examples

Run this code
Var1 <- c(rep(1, 50), rep(0, 50))
Var2 <- c(rep(0, 50), rep(1, 50))
x3 <- matrix(c(Var1, Var2), nrow = 100, ncol = 2)
r1 <- rbm.train(x3, 10, numepochs = 20, cd = 10)

Run the code above in your browser using DataLab